
Liqo

The Liqo Authors

Aug 04, 2023

FEATURES

1 What does it provide? 3

2 What to explore next? 5

3 Peering 7
3.1 Overview . 7
3.2 Approaches . 8

4 Offloading 11
4.1 Assigned resources . 11
4.2 Virtual kubelet . 12
4.3 Virtual node . 12
4.4 Namespace extension . 12
4.5 Pod offloading . 13
4.6 Resource reflection . 13

5 Network Fabric 15
5.1 Network manager . 15
5.2 Cross-cluster VPN tunnels . 15
5.3 In-cluster overlay network . 16

6 Storage Fabric 17

7 Requirements 19
7.1 Resources . 19
7.2 Connectivity . 19

8 Liqo CLI tool 23
8.1 Introduction . 23
8.2 Install liqoctl with Homebrew . 23
8.3 Install liqoctl with asdf . 24
8.4 Install liqoctl manually . 24
8.5 Install Kubectl plugin with Krew . 25
8.6 Install liqoctl from source . 26
8.7 Enable shell autocompletion . 26

9 Install 29
9.1 Install with liqoctl . 29
9.2 Customization options . 36
9.3 Install with Helm . 37
9.4 Install development versions . 38

i

9.5 Check installation . 38
9.6 Liqo and Calico . 39

10 Uninstall 41
10.1 Purge CRDs . 41

11 Requirements 43

12 Quick Start 45
12.1 Provision the playground . 45
12.2 Install Liqo . 46
12.3 Peer two clusters . 47
12.4 Leverage remote resources . 48
12.5 Play with a microservice application . 51
12.6 Tear down the playground . 52

13 Offloading with Policies 55
13.1 Provision the playground . 55
13.2 Peer the clusters . 56
13.3 Tune namespace offloading . 57
13.4 Deploy applications . 58
13.5 Tear down the playground . 59

14 Offloading a Service 61
14.1 Provision the playground . 61
14.2 Peer the clusters . 62
14.3 Offload a service . 62
14.4 Tear down the playground . 64

15 Stateful Applications 65
15.1 Provision the playground . 65
15.2 Peer the clusters . 66
15.3 Deploy a stateful application . 66
15.4 Consume the database . 67
15.5 Tear down the playground . 68

16 Global Ingress 71
16.1 Provision the playground . 71
16.2 Peer the clusters . 72
16.3 Deploy an application . 73
16.4 Check application spreading . 73
16.5 Check service reachability . 76
16.6 Tear down the playground . 77

17 Replicated Deployments 79
17.1 Provision the playground . 79
17.2 Peer the clusters . 80
17.3 Tune namespace offloading . 81
17.4 Deploy applications . 81
17.5 Tear down the playground . 82

18 Provision with Terraform 85
18.1 Provision the infrastructure . 85
18.2 Analyze the infrastructure and code . 85
18.3 Tear down the infrastructure . 89

ii

19 Peer two Clusters 91
19.1 Overview . 91
19.2 Out-of-band control plane . 92
19.3 In-band control plane . 94

20 Namespace Offloading 97
20.1 Overview . 97
20.2 Offloading a namespace . 97
20.3 Unoffloading a namespace . 99

21 Resource Reflection 101
21.1 Pods offloading . 101
21.2 Service exposition . 103
21.3 Persistent storage . 104
21.4 Configuration data . 104

22 Stateful Applications 105
22.1 Liqo virtual storage class . 105
22.2 Externally managed storage . 107

23 Prometheus Metrics 109
23.1 Scraping metrics . 109
23.2 Cross-cluster network metrics . 109
23.3 Virtual kubelet metrics . 110

24 External Network 113
24.1 Overview . 113
24.2 Enable/Disable the External Network . 113

25 Service Continuity 115
25.1 Resilience to cluster failures/unavailability . 115
25.2 Resilience to worker nodes failures . 117
25.3 High-availability Liqo components . 118

26 Contributing to Liqo 119
26.1 Repository structure . 119
26.2 Release notes generation . 119
26.3 Local development . 119
26.4 Automatic tests . 120

iii

iv

Liqo

Liqo is an open-source project that enables dynamic and seamless Kubernetes multi-cluster topologies, supporting
heterogeneous on-premise, cloud and edge infrastructures.

FEATURES 1

https://github.com/liqotech/liqo/stargazers/
https://github.com/liqotech/liqo/blob/master/LICENSE
https://liqo-io.slack.com/join/shared_invite/zt-h20212gg-g24YvN6MKiD9bacFeqZttQ
https://twitter.com/liqo_io
https://doc.liqo.io

Liqo

2 FEATURES

CHAPTER

ONE

WHAT DOES IT PROVIDE?

Peering

Automatic peer-to-peer establishment of resource and service consumption relationships between independent and
heterogeneous clusters. No need to worry about complex VPN configurations and certification authorities: everything
is transparently self-negotiated for you.

Offloading

Seamless workloads offloading to remote clusters, without requiring any modification to Kubernetes or the applications
themselves. Multi-cluster is made native and transparent: collapse an entire remote cluster to a virtual node
compliant with the standard Kubernetes approaches and tools.

Network Fabric

A transparent network fabric, enabling multi-cluster pod-to-pod and pod-to-service connectivity, regardless of the
underlying configurations and CNI plugins. Natively access the services exported by remote clusters, and spread
interconnected application components across multiple infrastructures, with all cross-cluster traffic flowing through
secured network tunnels.

Storage Fabric

A native storage fabric, supporting the remote execution of stateful workloads according to the data gravity ap-
proach. Seamlessly extend standard (e.g., database) high availability deployment techniques to the multi-cluster
scenarios, for increased guarantees. All without the complexity of managing multiple independent cluster and appli-
cation replicas.

3

Liqo

4 Chapter 1. What does it provide?

CHAPTER

TWO

WHAT TO EXPLORE NEXT?

Features

New to Liqo? Would you like to know more? Here you can find an in-depth overview of what a peering is, how
the virtual node abstraction enables workload offloading, as well as discover about the network and storage fabric
subsystems, ensuring the seamless functioning of unmodified multi-cluster applications.

Peering · Offloading · Network Fabric · Storage Fabric

Installation

Ready to give Liqo a try? Learn about installation and connectivity requirements, discover how to download and
install liqoctl, the CLI tool to streamline the installation and management of Liqo, and explore the customization
options, based on the target environment characteristics.

Requirements · Liqo CLI tool · Install · Uninstall

Examples

Would you like to quickly join the fray and experiment with Liqo? Set up your playground and check out the getting
started examples, which will guide you through a scenario-driven tour of the most notable features of Liqo. Dis-
cover how to offload (a subset of) your workloads, access services provided by remote clusters, expose multi-cluster
applications, and more.

Quick Start · Offloading with Policies · Offloading a Service · Stateful Applications · Global Ingress · Replicated De-
ployments · Provision with Terraform

Usage

Do you want to make a step further and discover all the Liqo configuration options? These guides get you covered!
Find out how to establish and configure a peering between two clusters, as well as how to enable and customize
namespace offloading. Explore the details about which and how native resources are reflected to remote clusters, and
learn more about the support for stateful applications.

Peer two Clusters · Namespace Offloading · Resource Reflection · Stateful Applications Prometheus Metrics External
Network Service Continuity

5

Liqo

6 Chapter 2. What to explore next?

CHAPTER

THREE

PEERING

In Liqo, we define peering a unidirectional resource and service consumption relationship between two Kubernetes
clusters, with one cluster (i.e., the consumer) granted the capability to offload tasks to a remote cluster (i.e., the provider),
but not vice versa. In this case, we say that the consumer establishes an outgoing peering towards the provider, which
in turn is subjected to an incoming peering from the consumer.

This configuration allows for maximum flexibility in asymmetric setups, while transparently supporting bidirectional
peerings through their combination. Additionally, the same cluster can play the role of provider and consumer in
multiple peerings.

3.1 Overview

Overall, the establishment of a peering relationship between two clusters involves four main tasks:

• Authentication: each cluster, once properly authenticated through pre-shared tokens, obtains a valid identity to
interact with the other cluster (i.e., its Kubernetes API server). This identity, granted only limited permissions
concerning Liqo-related resources, is then leveraged to negotiate the necessary parameters, as well as during the
offloading process.

• Parameters negotiation: the two clusters exchange the set of parameters required to complete the peering es-
tablishment, including the amount of resources shared with the consumer cluster, the information concerning
the setup of the network VPN tunnel, and more. The process is completely automatic and requires no user
intervention.

• Virtual node setup: the consumer cluster creates a new virtual node abstracting the resources shared by the
provider cluster. This transparently enables the task offloading process detailed in the offloading section, and it
is completely compliant with standard Kubernetes practice (i.e., it requires no API modifications for application
deployment and exposition).

• Network fabric setup: the two clusters configure their network fabric and establish a secure cross-cluster
VPN tunnel, according to the parameters negotiated in the previous phase (endpoints, security keys, address
remappings, . . .). Essentially, this enables pods hosted by the local cluster to seamlessly communicate with the
pods offloaded to a remote cluster, regardless of the underlying CNI plugin and configuration. Additional details
are presented in the network fabric section.

7

Liqo

3.2 Approaches

Liqo supports two non-mutually exclusive peering approaches (i.e., the same cluster can leverage a different approach
for different remote clusters), respectively referred to as out-of-band control plane and in-band control plane. The
following sections briefly overview the differences among them, outlining the respective trade-offs. Additional in-
depth details about the networking requirements are presented in the installation requirements section, while the usage
section describes the operational commands to establish both types of peering.

3.2.1 Out-of-band control plane

The standard peering approach is referred to as out-of-band control plane, since the Liqo control plane traffic (i.e.,
including both the initial authentication process and the communication with the remote Kubernetes API server) flows
outside the VPN tunnel interconnecting the two clusters (still, TLS is used to ensure secure communications). Indeed,
this tunnel is dynamically started in a later stage of the peering process, and it is leveraged only for cross-cluster pods
traffic.

The single cross-cluster traffic flow required by this approach is schematized at a high level in the figure below (agnostic
from how services are exposed, which is presented in the dedicated installation requirements section).

Overall, the out-of-band control plane approach:

• Supports clusters under the control of different administrative domains, as each party interacts only with its
own cluster: the provider retrieves an authentication token that is subsequently shared with and leveraged by the
consumer to start the peering process.

• Is characterized by high dynamism, as upon parameters modifications (e.g., concerning VPN setup) the nego-
tiation process ensures synchronization between clusters and the peering automatically re-converges to a stable
status.

• Requires each cluster to expose three different endpoints (i.e., the Liqo authentication service, the Liqo VPN
endpoint and the Kubernetes API server), making them accessible from the pods running in the remote cluster.

3.2.2 In-band control plane

The alternative peering approach is referred to as in-band control plane, since the Liqo control plane traffic flows
inside the VPN tunnel interconnecting the two clusters. In this case, the tunnel is statically established at the beginning
of the peering process (i.e., part of the negotiation process is carried out directly by the Liqo CLI tool), and it is leveraged
from that moment on for all inter-cluster traffic. The three different cross-cluster traffic flows required by this approach
are schematized at a high level in figure below (agnostic from how services are exposed, which is presented in the
dedicated installation requirements section).

Overall, the in-band control plane approach:

• Requires the administrator starting the peering process to have access to both clusters (although with limited
permissions), as the network parameters negotiation is performed through the Liqo CLI tool (which interacts at
the same time with both clusters). The remainder of the peering process, instead, is completed as usual, although
the entire communication flows inside the VPN tunnel.

• Statically configures the cross-cluster VPN tunnel at peering establishment time, hence requiring manual in-
tervention in case of configuration changes causing connectivity loss.

8 Chapter 3. Peering

Liqo

• Relaxes the connectivity requirements, as only the Liqo VPN endpoint needs to be reachable from the pods
running in the remote cluster. Specifically, the Kubernetes API service is not required to be exposed outside the
cluster.

3.2. Approaches 9

Liqo

10 Chapter 3. Peering

CHAPTER

FOUR

OFFLOADING

Workload offloading is enabled by a virtual node, which is spawned in the local (i.e., consumer) cluster at the end of
the peering process, and represents (and aggregates) the subset of resources shared by the remote cluster.

This solution enables the transparent extension of the local cluster, with the new node (and its capabilities) seamlessly
taken into account by the vanilla Kubernetes scheduler when selecting the best place for the workloads execution. At
the same time, this approach is fully compliant with the standard Kubernetes APIs, hence allowing to interact with
and inspect offloaded pods just as if they were executed locally.

4.1 Assigned resources

By default, the virtual node is assigned with 90% of the resources available in the remote cluster. For example:

• If the remote cluster has 100 vCPUs available, the virtual node created with 90 vCPUs.

• If now the remote cluster starts some applications that consume 50 vCPUs (i.e., pods requesting resources), the
virtual node is resized to 45 vCPUs (i.e., 90% of (100-50)).

• If the remote cluster has some autoscaling mechanism that, at some point, double the size of the cluster, which
reaches 200 vCPUs (all of them unused by any pod), the virtual node will be resized with 180 vCPUs.

This mechanism applies to all the physical resources available in the remote cluster, e.g., CPUs, RAM, GPUs and
more. The percentage of sharing can be customized also at run-time using the --sharing-percentage option, as
documented in the proper section of the Liqo installation.

Warning: Pay attention to math rounding. For instance, if your remote cluster has 1 GPU, with default settings
the virtual node will be set with 0.9 GPUs. Since numbers must be integers, you may end up with a virtual node
with zero GPUs.

More granular resource definitions with external Resource Plugins

The --sharing-percentage option is a unique and global parameter for the cluster. Hence, currently Liqo cannot
differentiate the resources assigned to different peered clusters. For a more granular definition of the resources, you
should consider to instal an external Resource Plugin, or create your own.

11

https://github.com/liqotech/liqo-resource-plugins

Liqo

4.2 Virtual kubelet

The virtual node abstraction is implemented by an extended version of the Virtual Kubelet project. A virtual kubelet
replaces a traditional kubelet when the controlled entity is not a physical node. In the context of Liqo, it interacts with
both the local and the remote clusters (i.e., the respective Kubernetes API servers) to:

1. Create the virtual node resource and reconcile its status with respect to the negotiated configuration.

2. Offload the local pods scheduled onto the corresponding (virtual) node to the remote cluster, while keeping their
status aligned.

3. Propagate and synchronize the accessory artifacts (e.g., Services, ConfigMaps, Secrets, . . .) required for proper
execution of the offloaded workloads, a feature we call resource reflection.

For each remote cluster, a different instance of the Liqo virtual kubelet is started in the local cluster, ensuring isolation
and segregating the different authentication tokens.

4.3 Virtual node

A virtual node summarizes and abstracts the amount of resources (e.g., CPU, memory, . . .) shared by a given remote
cluster. Specifically, the virtual kubelet automatically propagates the negotiated configuration into the capacity and
allocatable entries of the node status.

Node conditions reflect the current status of the node, with periodic and configurable healthiness checks performed
by the virtual kubelet to assess the reachability of the remote API server. This allows to mark the node as not ready in
case of repeated failures, triggering the standard Kubernetes eviction strategies based on the configured pod tolerations
(e.g., to enforce service continuity).

Finally, each virtual node includes a set of characterizing labels (e.g., geographical region, underlying provider, . . .)
suggested by the remote cluster. This enables the enforcement of fine-grained scheduling policies (e.g., through
affinity constraints), in addition to playing a key role in the namespace extension process presented below.

4.4 Namespace extension

To enable seamless workload offloading, Liqo extends Kubernetes namespaces across the cluster boundaries. Specif-
ically, once a given namespace is selected for offloading (see the namespace offloading usage section for the operational
procedure), Liqo proceeds with the automatic creation of twin namespaces in the subset of selected remote clusters.

Remote namespaces host the actual pods offloaded to the corresponding cluster, as well as the additional resources
propagated by the resource reflection process. This behavior is presented in the figure below, which shows a given
namespace existing in the local cluster and extended to a remote cluster. A group of pods is contained in the local
namespace, while a subset (i.e., those faded-out) is scheduled onto the virtual node and offloaded to the remote names-
pace. Additionally, the resource reflection process propagated different resources existing in the local namespace (e.g.,
Services, ConfigMaps, Secrets, . . .) in the remote one (represented faded-out), to ensure the correct execution of of-
floaded pods.

The Liqo namespace extension process features a high degree of customization, mainly enabling to:

• Select a specific subset of the available remote clusters, by means of standard selectors matching the label
assigned to the virtual nodes.

12 Chapter 4. Offloading

https://github.com/virtual-kubelet/virtual-kubelet#liqo-provider

Liqo

• Constraint whether pods should be scheduled onto physical nodes only, virtual nodes only, or both. The
extension of a namespace, forcing at the same time all pods to be scheduled locally, enables the consumption of
local services from the remote cluster, as shown in the service offloading example.

• Configure whether the remote namespace name should match the local one (although possibly incurring in
conflicts), or be automatically generated, such as to be unique.

4.5 Pod offloading

Once a pod is scheduled onto a virtual node, the corresponding Liqo virtual kubelet (indirectly) creates a twin pod
object in the remote cluster for actual execution. Liqo supports the offloading of both stateless and stateful pods, the
latter either relying on the provided storage fabric or leveraging externally managed solutions (e.g., persistent volumes
provided by the cloud provider infrastructure).

Remote pod resiliency (hence, service continuity), even in case of temporary connectivity loss between the two con-
trol planes, is ensured through a custom resource (i.e., ShadowPod) wrapping the pod definition, and triggering a
Liqo enforcement logic running in the remote cluster. This guarantees that the desired pod is always present, without
requiring the intervention of the originating cluster.

The virtual kubelet takes care of the automatic propagation of remote status changes to the corresponding local
pod (remapping the appropriate information), allowing for complete observability from the local cluster. Advanced
operations, such as metrics and logs retrieval, as well as interactive command execution inside remote containers,
are transparently supported, to comply with standard troubleshooting operations.

Additional details concerning how pods are propagated to remote clusters are provided in the resource reflection usage
section.

4.6 Resource reflection

The resource reflection process is responsible for the propagation and synchronization of selected control plane in-
formation into remote clusters, to enable the seamless execution of offloaded pods. Liqo supports the reflection of
the resources dealing with service exposition (i.e., Ingresses, Services and EndpointSlices), persistent storage (i.e.,
PersistentVolumeClaims and PersistentVolumes), as well as those storing configuration data (i.e., ConfigMaps and
Secrets).

All resources of the above types that live in a namespace selected for offloading are automatically propagated into the
corresponding twin namespaces created in the selected remote clusters. Specifically, the local copy of each resource is
the source of trust leveraged to realign the content of the shadow copy reflected remotely. Appropriate remapping of
certain information (e.g., endpoint IPs) is transparently performed by the virtual kubelet, accounting for conflicts and
different configurations in different clusters.

You can refer to the resource reflection usage section for a detailed characterization of how the different resources are
reflected into remote clusters.

4.5. Pod offloading 13

Liqo

14 Chapter 4. Offloading

CHAPTER

FIVE

NETWORK FABRIC

The network fabric is the Liqo subsystem transparently extending the Kubernetes network model across multiple
independent clusters, such that offloaded pods can communicate with each other as if they were all executed locally.

In detail, the network fabric ensures that all pods in a given cluster can communicate with all pods on all remote
peered clusters, either with or without NAT translation. The support for arbitrary clusters, with different parameters
and components (e.g., CNI plugins), makes it impossible to guarantee non-overlapping pod IP address ranges (i.e.,
PodCIDR). Hence, possibly requiring address translation mechanisms, provided that NAT-less communication is
preferred whenever address ranges are disjointed.

The figure below represents at a high level the network fabric established between two clusters, with its main compo-
nents detailed in the following.

5.1 Network manager

The network manager (not shown in figure) represents the control plane of the Liqo network fabric. It is executed
as a pod, and it is responsible for the negotiation of the connection parameters with each remote cluster during the
peering process.

It features an IP Address Management (IPAM) plugin, which deals with possible network conflicts through the
definition of high-level NAT rules (enforced by the data plane components). Additionally, it exposes an interface
consumed by the reflection logic to handle IP addresses remapping. Specifically, this is leveraged to handle the
translation of pod IPs (i.e., during the synchronization process from the remote to the local cluster), as well as during
EndpointSlices reflection (i.e., propagated from the local to the remote cluster).

5.2 Cross-cluster VPN tunnels

The interconnection between peered clusters is implemented through secure VPN tunnels, made with WireGuard,
which are dynamically established at the end of the peering process, based on the negotiated parameters.

Tunnels are set up by the Liqo gateway, a component of the network fabric that is executed as a privileged pod on one
of the cluster nodes. Additionally, it appropriately populates the routing table, and configures, by leveraging iptables,
the NAT rules requested to comply with address conflicts.

Although this component is executed in the host network, it relies on a separate network namespace and policy
routing to ensure isolation and prevent conflicts with the existing Kubernetes CNI plugin. Moreover, active/standby
high-availability is supported, to ensure minimum downtime in case the main replica is restarted.

15

https://www.wireguard.com/

Liqo

5.3 In-cluster overlay network

The overlay network is leveraged to forward all traffic originating from local pods/nodes, and directed to a remote
cluster, to the gateway, where it will enter the VPN tunnel. The same process occurs on the other side, with the traffic
that exits from the VPN tunnel entering the overlay network to reach the node hosting the destination pod.

Liqo leverages a VXLAN-based setup, which is configured by a network fabric component executed on all physical
nodes of the cluster (i.e., as a DaemonSet). Additionally, it is also responsible for the population of the appropriate
routing entries to ensure correct traffic forwarding.

16 Chapter 5. Network Fabric

CHAPTER

SIX

STORAGE FABRIC

The Liqo storage fabric subsystem enables the seamless offloading of stateful workloads to remote clusters. The
solution is based on two main pillars:

• Storage binding deferral until its first consumer is scheduled onto a given cluster (either local or remote). This
ensures that new storage pools are created in the exact location where their associated pods have just been
scheduled onto for execution.

• Data gravity, entering in action in the subsequent scheduling processes, and involving a set of automatic poli-
cies to attract pods in the appropriate cluster. This guarantees that pods requesting existing pools of storage
(e.g., following a restart) are scheduled onto the cluster physically hosting the corresponding data.

These approaches extend standard Kubernetes practice to multi-cluster scenarios, simplifying at the same time the
configuration of high availability and disaster recovery scenarios. To this end, one relevant use-case is represented
by database instances that need to be replicated and synchronized across different clusters, which is shown in the stateful
applications example.

Under the hood, the Liqo storage fabric leverages a virtual storage class, which embeds the logic to create the ap-
propriate storage pools in the different clusters. Whenever a new PersistentVolumeClaim (PVC) associated with the
virtual storage class is created, and its consumer is bound to a (possibly virtual) node, the Liqo logic goes into action,
based on the target node:

• If it is a local node, PVC operations are remapped to a second one, associated with the corresponding real
storage class, to transparently provision the requested volume.

• In case of virtual nodes, the reflection logic is responsible for creating the remote shadow PVC, remapped to
the negotiated storage class, and synchronizing the PersistentVolume information, to allow pod binding.

In both cases, locality constraints are automatically embedded within the resulting PersistentVolumes (PVs), to make
sure each pod is scheduled only onto the cluster where the associated storage pools are available.

Additional details about the configuration of the Liqo storage fabric, as well as concerning the possibility to move
storage pools among clusters through the Liqo CLI tool, are presented in the stateful applications usage section.

Note

In addition to the provided storage class, Liqo supports the execution of pods leveraging cross-cluster storage managed
by external solutions (e.g., persistent volumes provided by the cloud provider infrastructure).

17

Liqo

18 Chapter 6. Storage Fabric

CHAPTER

SEVEN

REQUIREMENTS

This page presents an overview of the main requirements, both in terms of resources and network connectivity, to
use Liqo and successfully establish peerings with remote clusters.

7.1 Resources

Liqo requires very limited resources (i.e., CPU, RAM, network bandwidth), making it suitable for both traditional
K8s clusters and resource constrained clusters, e.g., the ones running K3s on a Raspberry Pi.

While the exact numbers depend on the number of established peerings, number of offloaded pods and on the size
of the cluster, as a ballpark figure the entire Liqo control plane, executed on a two-nodes KinD cluster, peered with
one remote cluster, and while offloading 100 pods, requires less than:

• 0.5 CPU cores (only during transient periods, while CPU consumption is practically negligible in all the other
instants).

• 200 MB of RAM (this metric increases the more pods are offloaded to remote clusters).

• 5 Mbps of cross-cluster control plane traffic (only during transient periods). Data plane traffic, instead, depends
on the applications and their actual placements across the clusters.

However, to be on the safe side, we suggest installing Liqo on a cluster that has at least 2 CPUs and 2 GB of RAM,
which takes into account also the resources used by standard Kubernetes components.

Liqo is compatible with Kubernetes versions >= 1.22.

An accurate analysis of the Liqo performance compared to vanilla Kubernetes, including the characterization of the
resources consumed by Liqo, is presented in a dedicated blog post.

7.2 Connectivity

Liqo supports two alternative peering approaches, each characterized by different requirements in terms of network
connectivity (i.e., mutually reachable endpoints):

• Out-of-band control plane peering: it requires three separated traffic flows (hence, three exposed endpoints).

• in-band control plane peering: it requires a single endpoint, as all control plane traffic is tunneled inside the
cross-cluster VPN.

More details available in the peering section.

Note

19

https://medium.com/the-liqo-blog/benchmarking-liqo-kubernetes-multi-cluster-performance-d77942d7f67c

Liqo

The two peering approaches are non-mutually exclusive: a cluster can leverage different approaches toward different
remote clusters, provided that the connectivity requirements are satisfied.

7.2.1 Out-of-band control plane peering

In order to successfully establish an out-of-band control plane peering with a remote cluster, the following three services
need to be reciprocally accessible on both clusters (i.e., in terms of IP address/port):

• Authentication service (liqo-auth): the Liqo service used to authenticate incoming peering requests coming
from other clusters.

• Network gateway (liqo-gateway): the Liqo service responsible for the setup of the cross-cluster VPN tunnels.

• Kubernetes API server: the standard Kubernetes API Server, that is used by the (remote) Liqo instance to create
the resources required to start the peering process, and perform workload offloading.

Reciprocally accessible means that a first cluster must be able to connect to the <IP/port> of the above services exposed
on the second cluster, and vice versa (i.e., from second cluster to the first); some exceptions that refer to the network
gateway are detailed in the following of this page. This implies also that any network device (NAT, firewall, etc.) sitting
in the path between the two clusters must be configured to enable direct connectivity toward the above services, as
presented in the network firewalls section.

The tuple <IP/port> exported by the Liqo services (i.e., liqo-auth, liqo-gateway) depends on the Liqo configura-
tion, chosen at installation time, which may depend on the physical setup of your cluster and the characteristics of your
service. In particular:

• Authentication Service: when you install Liqo, you can choose to expose the authentication service through a
LoadBalancer service, a NodePort service, or an Ingress (the last allows the service to be exposed as ClusterIP).
This choice depends (1) on your necessities, (2) on the cluster configuration (e.g., a NodePort cannot be used
if your nodes have private IP addresses, hence cannot be reached from the Internet), and (3) whether the above
primitives (e.g., the Ingress Controller) are available in your cluster.

• Network Gateway: the same applies also for the network gateway, except that it cannot be exported through an
Ingress. In fact, while the authentication service uses a standard HTTP/REST interface, the network gateway is
the termination of a UDP-based network tunnel; hence only LoadBalancer and NodePort services are supported.

Note

Liqo supports scenarios in which, given two clusters, only one of the two network gateways is publicly reachable from
the remote cluster (i.e., in terms of <IP/port> tuple), although communication must be allowed by possible firewalls
sitting in the path.

By default, liqoctl exposes both the authentication service and the network gateway through a dedicated LoadBalancer
service, falling back to a NodePort for simpler setups (i.e., KinD and K3s). However, more advanced configurations
can be achieved by configuring the proper Helm chart parameters, either directly or by customizing the installation
process through liqoctl.

An overview of the overall connectivity requirements to establish out-of-band control plane peerings in Liqo is shown
in the figure below.

20 Chapter 7. Requirements

https://github.com/liqotech/liqo/tree/master/deployments/liqo

Liqo

Additional considerations

The choice of the way you expose Liqo services to remote clusters may not be trivial in some cases. Here, we list some
additional notes you should consider in your choice:

• NodePort service: although a NodePort service can be used to expose the authentication service and the network
gateway, often the IP addresses of the nodes are configured with private IP addresses, hence not being suitable
for connections originated from the Internet. This happens rather often in production clusters, and on public
clusters as well.

• Ingress controller: in case the authentication service is exposed through an Ingress, you should remember that,
by default, the authentication service uses the TLS protocol. Hence, either you configure your Ingress Controller
to connect to backend services with TLS as well, or you disable TLS on the authentication service.

Finally, in some cases clusters may reside behind a NAT. Liqo transparently supports scenarios with one cluster behind
NAT and the other publicly reachable. Yet, in such situations, we suggest leveraging the in-band peering, as it simplifies
the overall configuration.

7.2.2 In-band control plane peering

In order to successfully establish an in-band control plane peering with a remote cluster, you need only the network
gateways to be mutually reachable, since all the Liqo control plane traffic is then configured to flow inside the VPN
tunnel. All considerations presented above and referring to the exposition of the network gateway apply also in this
case.

Given the connectivity requirements are a subset of the previous case, this solution is compatible with the configurations
that enable the out-of-band peering approach. Additionally, it:

• Supports scenarios characterized by a non publicly accessible Kubernetes API Server.

• Allows to expose the authentication service as a ClusterIP service, reducing the number of services exposed
externally.

• Enables setups with one cluster behind NAT, since the VPN tunnel can be established successfully even in case
only one of the two network gateways is publicly reachable from the other cluster.

An overview of the overall connectivity requirements to establish in-band control plane peerings in Liqo is shown in
the figure below.

Warning: Due to current limitations, the establishment of an in-band peering may not complete successfully in
case the authentication service is exposed through an Ingress to which the TLS termination is delegated (i.e., when
TLS is disabled on the authentication service).

7.2.3 Network firewalls

In some cases, especially on production setups, additional network limitations are present, such as firewalls that may
impair network connectivity, which must be considered in order to enable Liqo peerings.

Depending on your configuration and the selected peering approach, you may have to configure existing firewalls
to enable remote clusters to contact either the liqo-gateway only or all the three endpoints (i.e., liqo-auth,
liqo-gateway and Kubernetes API server) that need to be publicly accessible in the peering phase.

7.2. Connectivity 21

Liqo

To know the network parameters (i.e., <IP/port>) used by liqo-auth and liqo-gateway, you can use standard Ku-
bernetes commands (e.g., kubectl get services -n liqo), while the <IP/port> tuple used by your Kubernetes
API server is the one written in the kubeconfig file.

Remember that the Kubernetes API server and authentication service use the HTTPS protocol (over TCP); vice versa,
the network gateway uses the WireGuard protocol over UDP.

22 Chapter 7. Requirements

https://www.wireguard.com/

CHAPTER

EIGHT

LIQO CLI TOOL

8.1 Introduction

Liqoctl is the CLI tool to streamline the installation and management of Liqo. Specifically, it abstracts the creation
and modification of Liqo defined custom resources, allowing to:

• Install/uninstall Liqo, wrapping the corresponding Helm commands and automatically retrieving the appropri-
ate parameters based on the target cluster configuration.

• Establish and revoke peering relationships towards remote clusters.

• Enable and configure workload offloading on a per-namespace basis.

• Retrieve the status of Liqo, as well as of given peering relationships and offloading setups.

Warning: Make sure to always use the liqoctl version matching that of Liqo installed (or to be installed) in your
cluster(s).

Note

liqoctl displays a kubectl compatible behavior concerning Kubernetes API access, hence supporting the KUBECONFIG
environment variable, as well as all the standard flags, including --kubeconfig and --context. Moreover, subcom-
mands interacting with two clusters (e.g., liqoctl peer in-band) feature a parallel set of flags concerning Kubernetes API
access to the remote cluster, in the form --remote-<flag> (e.g., --remote-kubeconfig, --remote-context).

8.2 Install liqoctl with Homebrew

If you are using the Homebrew package manager, you can install liqoctl with Homebrew:

brew install liqoctl

When installed with Homebrew, autocompletion scripts are automatically configured and should work out of the box.

23

https://brew.sh/

Liqo

8.3 Install liqoctl with asdf

If you are using the asdf runtime manager, you can install liqoctl with asdf:

Add the liqoctl plugin for asdf
asdf plugin add liqoctl

List all installable versions
asdf list-all liqoctl

Install the desired version
asdf install liqoctl <version>

set it as the global version, unless a project declares it otherwise locally
asdf global liqoctl <version>

8.4 Install liqoctl manually

You can download and install liqoctl manually, following the appropriate instructions based on your operating system
and architecture.

Linux

Download liqoctl and move it to a file location in your system PATH:

AMD64:

curl --fail -LS "https://github.com/liqotech/liqo/releases/download/v0.9.0/liqoctl-linux-
→˓amd64.tar.gz" | tar -xz
sudo install -o root -g root -m 0755 liqoctl /usr/local/bin/liqoctl

ARM64:

curl --fail -LS "https://github.com/liqotech/liqo/releases/download/v0.9.0/liqoctl-linux-
→˓arm64.tar.gz" | tar -xz
sudo install -o root -g root -m 0755 liqoctl /usr/local/bin/liqoctl

Note

Make sure /usr/local/bin is in your PATH environment variable.

24 Chapter 8. Liqo CLI tool

https://asdf-vm.com/

Liqo

MacOS

Download liqoctl, make it executable, and move it to a file location in your system PATH:

Intel:

curl --fail -LS "https://github.com/liqotech/liqo/releases/download/v0.9.0/liqoctl-
→˓darwin-amd64.tar.gz" | tar -xz
chmod +x liqoctl
sudo mv liqoctl /usr/local/bin/liqoctl

Apple Silicon:

curl --fail -LS "https://github.com/liqotech/liqo/releases/download/v0.9.0/liqoctl-
→˓darwin-arm64.tar.gz" | tar -xz
chmod +x liqoctl
sudo mv liqoctl /usr/local/bin/liqoctl

Note

Make sure /usr/local/bin is in your PATH environment variable.

Windows

Download the liqoctl binary:

curl --fail -LSO "https://github.com/liqotech/liqo/releases/download/v0.9.0/liqoctl-
→˓windows-amd64"

And move it to a file location in your system PATH.

Alternatively, you can manually download liqoctl from the Liqo releases page on GitHub.

8.5 Install Kubectl plugin with Krew

You can install liqoctl as a kubectl plugin by using the Krew plugin manager:

kubectl krew install liqo

Then, all commands shall be invoked with kubectl liqo rather than liqoctl, although all functionalities remain
the same.

Warning: While the kubectl plugin is supported, it is recommended to use liqoctl as this enables a better experience
via tab auto-completion. Install it with Homebrew if available on your system or by manually downloading the
binary from GitHub.

8.5. Install Kubectl plugin with Krew 25

https://github.com/liqotech/liqo/releases/
https://krew.sigs.k8s.io/

Liqo

8.6 Install liqoctl from source

You can install liqoctl building it from source. To do so, clone the Liqo repository, build the liqoctl binary, and move
it to a file location in your system PATH:

git clone https://github.com/liqotech/liqo.git
cd liqo
make ctl
mv liqoctl /usr/local/bin/liqoctl

8.7 Enable shell autocompletion

liqoctl provides autocompletion support for Bash, Zsh, Fish, and PowerShell.

Bash

The liqoctl completion script for Bash can be generated with the liqoctl completion bash command. Sourcing
the completion script in your shell enables liqoctl autocompletion.

However, the completion script depends on bash-completion, which means that you have to install this software first.
You can test if you have bash-completion already installed by running type _init_completion. If it returns an error,
you can install it via your OS’s package manager.

To load completions in your current shell session:

source <(liqoctl completion bash)

To load completions for every new session, execute once:

source <(liqoctl completion bash) >> ~/.bashrc

After reloading your shell, liqoctl autocompletion should be working.

Zsh

The liqoctl completion script for Zsh can be generated with the liqoctl completion zsh command.

If shell completion is not already enabled in your environment, you will need to enable it. You can execute the following
once:

echo "autoload -U compinit; compinit" >> ~/.zshrc

To load completions for each session, execute once:

liqoctl completion zsh > "${fpath[1]}/_liqoctl"

After reloading your shell, liqoctl autocompletion should be working.

26 Chapter 8. Liqo CLI tool

Liqo

Fish

The liqoctl completion script for Fish can be generated with the liqoctl completion fish command.

To load completions in your current shell session:

liqoctl completion fish | source

To load completions for every new session, execute once:

liqoctl completion fish > ~/.config/fish/completions/liqoctl.fish

After reloading your shell, liqoctl autocompletion should be working.

PowerShell

The liqoctl completion script for PowerShell can be generated with the liqoctl completion powershell com-
mand.

To load completions in your current shell session:

liqoctl completion powershell | Out-String | Invoke-Expression

To load completions for every new session, add the output of the above command to your PowerShell profile.

After reloading your shell, liqoctl autocompletion should be working.

8.7. Enable shell autocompletion 27

Liqo

28 Chapter 8. Liqo CLI tool

CHAPTER

NINE

INSTALL

Liqo can be easily installed with liqoctl, which automatically handles all the customized settings required to set up
the software on the multiple provider/distribution supported (e.g., AWS, EKS, GKE, Kubeadm, etc.). Under the hood,
liqoctl uses Helm 3 to configure and install all the Liqo components, using the Helm chart available in the official
repository.

Alternatively, liqoctl can also be configured to generate a local file with pre-configured values, which can be further
customized and used for a manual installation with Helm.

9.1 Install with liqoctl

Below, you can find the basic information to install and configure Liqo, depending on the selected Kubernetes distri-
bution and/or cloud provider. By default, liqoctl install installs the latest stable version of Liqo, although this can be
changed with the --version flag.

The rest of this page presents additional customization options that apply to all setups, as well as advanced options
that are cloud/distribution-specific.

Note

liqoctl implements a kubectl compatible behavior with respect to Kubernetes API access, hence supporting the
KUBECONFIG environment variable, as well as all the standard flags, including --kubeconfig and --context. Hence,
make sure you selected the correct target cluster before issuing liqoctl commands (as you would do with kubectl).

Kubeadm

Supported CNIs

Liqo supports Kubernetes clusters using the following CNIs: Flannel, Calico, Canal, Weave. Additionally, partial
support is provided for Cilium, although with the limitations listed below.

Warning: If you are installing Liqo on a cluster using the Calico CNI, you MUST read the dedicated configuration
section to avoid unwanted misconfigurations.

Liqo + Cilium limitations

29

https://helm.sh/
https://github.com/flannel-io/flannel
https://www.tigera.io/project-calico/
https://github.com/projectcalico/canal
https://github.com/weaveworks/weave
https://cilium.io/

Liqo

Currently, Liqo supports the Cilium CNI only when kube-proxy is enabled. Additionally, known limitations concern
the impossibility of accessing the backends of NodePort and LoadBalancer services hosted on remote clusters, from a
local cluster using Cilium as CNI.

Installation

Liqo can be installed on a Kubeadm cluster with the following command:

liqoctl install kubeadm

The name of the cluster is automatically generated, then used during the peering and offloading processes. Alternatively,
you can manually specify a desired name with the --cluster-name flag.

Service Type

By default, the kubeadm provider exposes liqo-auth and liqo-gateway with LoadBalancer services. To change this
behavior, check the network flags.

OpenShift

Supported versions

Liqo was tested on OpenShift Container Platform (OCP) 4.8.

Installation

Liqo can be installed on an OpenShift Container Platform (OCP) cluster with the following command:

liqoctl install openshift

The name of the cluster is automatically generated, then used during the peering and offloading processes. Alternatively,
you can manually specify a desired name with the --cluster-name flag.

Service Type

By default, the openshift provider exposes liqo-auth and liqo-gateway with LoadBalancer services. To change this
behavior, check the network flags.

AKS

Supported CNIs

Liqo supports AKS clusters using the following CNIs: Azure AKS - Kubenet and Azure AKS - Azure CNI.

Configuration

To install Liqo on AKS, you should first log in using the az CLI (if not already done):

az login

Before continuing, you should export the following variables with some information about your cluster:

30 Chapter 9. Install

https://learn.microsoft.com/en-us/azure/aks/configure-kubenet
https://learn.microsoft.com/en-us/azure/aks/configure-azure-cni

Liqo

The resource group where the cluster is created
export AKS_RESOURCE_GROUP=resource-group
The name of AKS cluster resource on Azure
export AKS_RESOURCE_NAME=cluster-name
The name of the subscription associated with the AKS cluster
export AKS_SUBSCRIPTION_ID=subscription-name

Note

During the installation process, you need read-only permissions on the AKS cluster and on the Virtual Networks, if
your cluster leverages the Azure CNI.

Installation

Liqo can be installed on an AKS cluster with the following command:

liqoctl install aks --resource-group-name "${AKS_RESOURCE_GROUP}" \
--resource-name "${AKS_RESOURCE_NAME}" \
--subscription-name "${AKS_SUBSCRIPTION_ID}"

The name of the cluster will be equal to the one specified in the --resource-name parameter. Alternatively, you can
manually set a different name with the --cluster-name liqoctl flag.

Note

If you are running an AKS private cluster, you may need to set the --disable-api-server-sanity-check liqoctl
flag, since the API Server in your kubeconfig may be different from the one retrieved from the Azure APIs.

Additionally, since your API Server is not accessible from the public Internet, you shall leverage the in-band peering
approach towards the clusters not attached to the same Azure Virtual Network.

Service Type

By default, the AKS provider exposes liqo-auth and liqo-gateway with LoadBalancer services. To change this behav-
ior, check the network flags.

EKS

Supported CNIs

Liqo supports EKS clusters using the default CNI: AWS EKS - amazon-vpc-cni-k8s.

Configuration

Liqo leverages AWS credentials to authenticate peered clusters. Specifically, in addition to the read-only permissions
used to configure the cluster installation (i.e., retrieve the appropriate parameters), Liqo uses AWS users to map peering
access to EKS clusters.

To install Liqo on EKS, you should first log in using the aws CLI (if not already done). This is widely documented on
the official CLI documentation. In a nutshell, after having installed the CLI, you have to set up your identity:

aws configure

9.1. Install with liqoctl 31

https://learn.microsoft.com/en-us/azure/aks/private-clusters
https://github.com/aws/amazon-vpc-cni-k8s
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

Liqo

You can install Liqo even if you are not an EKS administrator. The minimum IAM permissions required by a user to
install Liqo are the following:

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"eks:DescribeCluster",
"iam:CreateUser",
"iam:CreateAccessKey",
"ec2:DescribeVpcs"

],
"Resource": "*"

},
{

"Effect": "Allow",
"Action": [

"iam:CreatePolicy",
"iam:GetPolicyVersion",
"iam:GetPolicy",
"iam:AttachUserPolicy",
"iam:GetUser",
"iam:TagUser",
"iam:ListAccessKeys"

],
"Resource": [

"arn:aws:iam::*:user/liqo-*",
"arn:aws:iam::*:policy/liqo-*"

]
}

]
}

Before continuing, you should export the following variables with some information about your cluster:

The name of the target cluster
export EKS_CLUSTER_NAME=cluster-name
The AWS region where the cluster is deployed
export EKS_CLUSTER_REGION=cluster-region

Then, you should retrieve the cluster’s kubeconfig (if you have not done it already) with the following CLI command:

aws eks --region ${EKS_CLUSTER_REGION} update-kubeconfig --name ${EKS_CLUSTER_NAME}

Installation

Liqo can be installed on an EKS cluster with the following command:

liqoctl install eks --eks-cluster-region=${EKS_CLUSTER_REGION} \
--eks-cluster-name=${EKS_CLUSTER_NAME}

The name of the cluster will be equal to the one specified in the --eks-cluster-name parameter. Alternatively, you
can manually set a different name with the --cluster-name liqoctl flag.

32 Chapter 9. Install

Liqo

Service Type

By default, the EKS provider exposes liqo-auth and liqo-gateway with LoadBalancer services. To change this behav-
ior, check the network flags.

GKE

Supported CNIs

Liqo supports GKE clusters using the default CNI: Google GKE - VPC-Native.

Warning: Liqo does not support GKE Autopilot Clusters.

Configuration

To install Liqo on GKE, you should create a service account for liqoctl, granting the read rights for the GKE clusters
(you may reduce the scope to a specific cluster if you prefer).

First, you should export the following variables with some information about your cluster and the service account to
create:

The name of the service account used by liqoctl to interact with GCP
export GKE_SERVICE_ACCOUNT_ID=liqoctl
The path where the GCP service account is stored
export GKE_SERVICE_ACCOUNT_PATH=~/.liqo/gcp_service_account

The ID of the GCP project where your cluster was created
export GKE_PROJECT_ID=project-id
The GCP zone where your GKE cluster is executed (if you are using zonal GKE clusters)
export GKE_CLUSTER_ZONE=europe-west1-b
The GCP region where your GKE cluster is executed (if you are using regional GKE␣
→˓clusters)
export GKE_CLUSTER_REGION=europe-west1
The name of the GKE resource on GCP
export GKE_CLUSTER_ID=liqo-cluster

Second, you should create a GCP service account. This will represent the identity used by liqoctl to query the infor-
mation required to properly configure Liqo on your cluster. The service account can be created using:

gcloud iam service-accounts create ${GKE_SERVICE_ACCOUNT_ID} \
--project="${GKE_PROJECT_ID}" \
--description="The identity used by liqoctl during the installation process" \
--display-name="liqoctl"

Third, you should grant the service account the rights to inspect the cluster and the virtual networks parameters:

gcloud projects add-iam-policy-binding ${GKE_PROJECT_ID} \
--member="serviceAccount:${GKE_SERVICE_ACCOUNT_ID}@${GKE_PROJECT_ID}.iam.

→˓gserviceaccount.com" \
--role="roles/container.clusterViewer"

gcloud projects add-iam-policy-binding ${GKE_PROJECT_ID} \
(continues on next page)

9.1. Install with liqoctl 33

https://cloud.google.com/kubernetes-engine/docs/how-to/alias-ips

Liqo

(continued from previous page)

--member="serviceAccount:${GKE_SERVICE_ACCOUNT_ID}@${GKE_PROJECT_ID}.iam.
→˓gserviceaccount.com" \

--role="roles/compute.networkViewer"

Fourth, you should create and download a set of valid service accounts keys, as presented by the official documentation.
The keys will be used by liqoctl to authenticate to GCP:

gcloud iam service-accounts keys create ${GKE_SERVICE_ACCOUNT_PATH} \
--iam-account=${GKE_SERVICE_ACCOUNT_ID}@${GKE_PROJECT_ID}.iam.gserviceaccount.com

Finally, you should retrieve the cluster’s kubeconfig (if you have not done it already) with the following CLI command
in case of zonal GKE clusters:

gcloud container clusters get-credentials ${GKE_CLUSTER_ID} \
--zone ${GKE_CLUSTER_ZONE} --project ${GKE_PROJECT_ID}

or, in case of regional GKE clusters:

gcloud container clusters get-credentials ${GKE_CLUSTER_ID} \
--region ${GKE_CLUSTER_REGION} --project ${GKE_PROJECT_ID}

The retrieved kubeconfig will be added to the currently selected file (i.e., based on the KUBECONFIG environment
variable, with fallback to the default path ~/.kube/config) or created otherwise.

Installation

Liqo can be installed on a zonal GKE cluster with the following command:

liqoctl install gke --project-id ${GKE_PROJECT_ID} \
--cluster-id ${GKE_CLUSTER_ID} \
--zone ${GKE_CLUSTER_ZONE} \
--credentials-path ${GKE_SERVICE_ACCOUNT_PATH}

or, in case of regional GKE clusters:

liqoctl install gke --project-id ${GKE_PROJECT_ID} \
--cluster-id ${GKE_CLUSTER_ID} \
--region ${GKE_CLUSTER_REGION} \
--credentials-path ${GKE_SERVICE_ACCOUNT_PATH}

The name of the cluster will be equal to the one defined in GCP. Alternatively, you can manually set a different name
with the --cluster-name liqoctl flag.

Service Type

By default, the GKE provider exposes liqo-auth and liqo-gateway with LoadBalancer services. To change this be-
havior, check the network flags.

34 Chapter 9. Install

https://cloud.google.com/iam/docs/keys-create-delete?hl=it#creating

Liqo

K3s

Note

By default, the K3s installer stores the kubeconfig to access your cluster in the non-standard path /etc/rancher/
k3s/k3s.yaml. Make sure to properly refer to it when using liqoctl (e.g., setting the KUBECONFIG variable), and that
the current user has permissions to read it.

Installation

Liqo can be installed on a K3s cluster with the following command:

liqoctl install k3s

You may additionally set the --api-server-url flag to override the Kubernetes API Server address used by
remote clusters to contact the local one. This operation is necessary in case the default address (https://
<control-plane-node-ip>:6443) is unsuitable (e.g., the node IP is externally remapped).

The name of the cluster is automatically generated, then used during the peering and offloading processes. Alternatively,
you can manually specify a desired name with the --cluster-name flag.

Service Type

By default, the k3s provider exposes liqo-auth and liqo-gateway with NodePort services. To change this behavior,
check the network flags.

KinD

Installation

Liqo can be installed on a KinD cluster with the following command:

liqoctl install kind

The name of the cluster is automatically generated, then used during the peering and offloading processes. Alternatively,
you can manually specify a desired name with the --cluster-name flag.

Service Type

By default, the kind provider exposes liqo-auth and liqo-gateway with NodePort services. To change this behavior,
check the network flags.

9.1. Install with liqoctl 35

Liqo

Other

Configuration

To install Liqo on alternative Kubernetes distributions, you should manually retrieve three main configuration param-
eters:

• API Server URL: the Kubernetes API Server URL (defaults to the one specified in the kubeconfig).

• Pod CIDR: the range of IP addresses used by the cluster for the pod network.

• Service CIDR: the range of IP addresses used by the cluster for service VIPs.

Installation

Once retrieved the above parameters, Liqo can be installed on a generic cluster with the following command:

liqoctl install --api-server-url=<API-SERVER-URL> \
--pod-cidr=<POD-CIDR> --service-cidr=<SERVICE-CIDR>

The name of the cluster is automatically generated, then used during the peering and offloading processes. Alternatively,
you can manually specify a desired name with the --cluster-name flag.

Service Type

By default, liqoctl exposes liqo-auth and liqo-gateway with LoadBalancer services. To change this behavior, check
the network flags.

9.2 Customization options

This section lists the main customization parameters supported by the liqoctl install command, along with a brief
description. Additionally, all parameters available in the Helm values file (the full list is provided in the dedicated
repository page) can be modified through the liqoctl install --set flag, which supports the standard Helm syn-
tax.

Finally, remember that:

• You can type liqoctl install --help to get the list of available options.

• Some of the above parameters can be changed after installation by simply updating their value and re-applying
the Helm chart, or by re-issuing the proper liqoctl install --set [param=value] command. However,
given that not all parameters can be updated at run-time, please check that the command triggered the desired
effect; a precise list of commands that can be changed at run-time is left for our future work.

9.2.1 Global

The main global flags, besides those concerning the installation of development versions, include:

• --enable-ha: enables the support for high-availability of the Liqo components, starting two replicas (in an
active/standby configuration) of the gateway to ensure no cross-cluster connectivity downtime in case one of the
replicas is restarted, as well as of the controller manager, which embeds the Liqo control plane logic.

• --enable-metrics: exposes Liqo metrics through Prometheus (see the dedicated Prometheus metrics page
for additional details).

• --timeout: configures the timeout for the completion of the installation/upgrade process. Once expired, the
process is aborted and Liqo is rolled back to the previous version.

36 Chapter 9. Install

https://github.com/liqotech/liqo/tree/master/deployments/liqo

Liqo

• --verbose: enables verbose logs, providing additional information concerning the installation/upgrade process
(e.g., for troubleshooting).

• --disable-telemetry: disables the collection of telemetry data, which is enabled by default. The telemetry
is used to collect anonymous usage statistics, which are used to improve Liqo. Additional details are provided
here.

9.2.2 Control plane

The main control plane flags include:

• --cluster-name: configures a name identifying the cluster in Liqo. This name is propagated to remote
clusters during the peering process, and used to identify the corresponding virtual nodes and the Liqo resources
used in the peering process. Additionally, the cluster name is used as part of the suffix to ensure namespace
names uniqueness during the offloading process. In case a cluster name is not specified, it is defaulted to that of
the cluster in the cloud provider, if any, or it is automatically generated.

• --cluster-labels: a set of labels (i.e., key/value pairs) identifying the cluster in Liqo (e.g., geographical
region, Kubernetes distribution, cloud provider, . . .) and automatically propagated during the peering process to
the corresponding virtual nodes. These labels can be used later to restrict workload offloading to a subset of
clusters, as detailed in the namespace offloading usage section.

• --sharing-percentage: the maximum percentage of available cluster resources that could be shared with
remote clusters. This is the Liqo’s default behavior, which can be changed by deploying a custom resource plugin.
More details about the amount of resources shared by a cluster is available in the Resource Offloading page. Note:
the --sharing-percentage can be updated (e.g., via helm) dynamically, without reinstalling Liqo.

9.2.3 Networking

The main networking flags include:

• --reserved-subnets: the list of private CIDRs to be excluded from the ones used by Liqo to remap remote
clusters in case of address conflicts, as already in use (e.g., the subnet of the cluster nodes). The Pod CIDR and
the Service CIDR shall not be manually specified, as automatically included in the reserved list.

• --service-type: overrides the service type used by liqo-gateway and liqo-auth services. Possible values are:
LoadBalancer, NodePort, and ClusterIP. By default, the service type is the one specified by the selected
provider (check the provider’s specific installation) or LoadBalancer.

9.3 Install with Helm

To install Liqo directly with Helm, you can proceed as follows:

1. Add the Liqo Helm repository:

helm repo add liqo https://helm.liqo.io/

2. Update the local Helm repository cache:

helm repo update

3. Generate a pre-configured values file with liqoctl:

liqoctl install <provider> [flags] --only-output-values

9.3. Install with Helm 37

https://github.com/liqotech/liqo/blob/master/pkg/telemetry/doc.go
https://github.com/liqotech/liqo-resource-plugins

Liqo

The resulting values file is saved in the current directory, as values.yaml, or in the path specified through the
--dump-values-path flag.

Note

The current step is optional, but it relieves the user from the retrieval of the set of necessary parameters depending
on the target provider/distribution. Alternatively, the upstream values file can be retrieved through:

helm show values liqo/liqo > values.yaml

4. Appropriately configure the values file. The full list of options is provided in the dedicated repository page.

5. Install Liqo:

helm install liqo liqo/liqo --namespace liqo \
--values <path-to-values-file> --create-namespace

9.4 Install development versions

In addition to released versions (including alpha and beta candidates), liqoctl provides the possibility to install devel-
opment versions of Liqo. Development versions include:

• All commits merged into the master branch of Liqo.

• The commits of pull requests to the Liqo repository, whose images have been built through the appropriate bot
command.

The installation of a development version of Liqo can be triggered specifying a commit SHA through the --version
flag. In this case, liqoctl proceeds to clone the repository (either from the official repository, or from a fork configured
through the --repo-url flag) at the given revision, and to leverage the Helm chart therein contained:

liqoctl install <provider> --version <commit-sha> --repo-url <forked-repo-url>

Alternatively, the Helm chart can be retrieved from a local path, as configured through the --local-chart-path
flag:

liqoctl install <provider> --version <commit-sha> --local-chart-path <path-to-local-
→˓chart>

9.5 Check installation

After the installation, you can check the status of the Liqo components. In particular, the following command can be
used to check the status of the Liqo pods and get local information:

liqoctl status

38 Chapter 9. Install

https://github.com/liqotech/liqo/tree/master/deployments/liqo

Liqo

9.6 Liqo and Calico

Liqo adds several interfaces to the cluster nodes to handle cross-cluster traffic routing. Those interfaces are intended
to not interfere with the normal CNI job.

However, by default, Calico scans all existing interfaces on a node to detect network configurations and establish the
correct routes. To prevent misconfigurations, Calico shall then be configured to skip Liqo-managed interfaces during
this process. This is required if Calico is configured in BGP mode, while not in case the VPC native setup is leveraged.

In Calico v3.17 and above, this can be performed by patching the Installation CR, adding the following:

apiVersion: operator.tigera.io/v1
kind: Installation
metadata:
name: default

spec:
calicoNetwork:
nodeAddressAutodetectionV4:
skipInterface: liqo.*

...
...

For Calico versions prior to 3.17, instead, you should modify the calico-node DaemonSet, adding the appropriate
environment variable to the calico-node container.

apiVersion: apps/v1
kind: DaemonSet
metadata:
name: calico-node
namespace: kube-system

spec:
template:
spec:
containers:
- name: calico-node
env:
- name: IP_AUTODETECTION_METHOD
value: skip-interface=liqo.*

...

9.6. Liqo and Calico 39

Liqo

40 Chapter 9. Install

CHAPTER

TEN

UNINSTALL

Liqo can be uninstalled by leveraging the dedicated liqoctl command:

liqoctl uninstall

Alternatively, the same operation can be performed directly with Helm:

helm uninstall liqo --namespace liqo

Note

Due to current limitations, the uninstallation process might hang in case peerings are still established, or namespaces
are selected for offloading. To this end, liqoctl performs a set of pre-checks and aborts the process in case any of the
above is found, requesting the administrator to unpeer all clusters and unoffload all namespaces with the dedicated
liqoctl commands.

10.1 Purge CRDs

By default, the uninstallation process does not remove the Liqo CRDs and the system namespaces. These operations
can be performed by adding the --purge flag:

liqoctl uninstall --purge

41

Liqo

42 Chapter 10. Uninstall

CHAPTER

ELEVEN

REQUIREMENTS

Before starting the tutorials below, you should ensure the following software is installed on your system:

• Docker, the container runtime.

• Kubectl, the command-line tool for Kubernetes.

• Helm, the package manager for Kubernetes.

• curl, to interact with the tutorial applications through HTTP/HTTPS.

• KinD, the Kubernetes in Docker runtime.

• liqoctl command-line tool to interact with Liqo.

The following tutorials were tested on Linux, macOS, and Windows (WSL2 and Docker Desktop).

Warning: To prevent issues with tutorials leveraging more than two clusters, on some systems you may need to
increase the maximum number of inotify watches:

sudo sysctl fs.inotify.max_user_watches=52428899
sudo sysctl fs.inotify.max_user_instances=2048

43

https://www.docker.com/
https://kubernetes.io/docs/tasks/tools/#kubectl
https://helm.sh/docs/intro/install/
https://curl.se/
https://kind.sigs.k8s.io/docs/user/quick-start/#installation

Liqo

44 Chapter 11. Requirements

CHAPTER

TWELVE

QUICK START

This tutorial aims at presenting how to install Liqo and practicing with its most notable capabilities. You will learn
how to create a virtual cluster by peering two Kubernetes clusters and how to deploy a simple application on it.

12.1 Provision the playground

First, check that you are compliant with the requirements.

Then, let’s open a terminal on your machine and launch the following script, which creates a pair of clusters with KinD.
Each cluster is made by two nodes (one for the control plane and one as a simple worker):

git clone https://github.com/liqotech/liqo.git
cd liqo
git checkout master
cd examples/quick-start
./setup.sh

12.1.1 Explore the playground

You can inspect the deployed clusters by typing:

kind get clusters

You should see a couple of entries:

milan
rome

This means that two KinD clusters are deployed and running on your host.

Then, you can simply inspect the status of the clusters. To do so, you can export the KUBECONFIG variable to specify
the identity file for kubectl and liqoctl, and then contact the cluster.

By default, the kubeconfigs of the two clusters are stored in the current directory (./liqo_kubeconf_rome, ./
liqo_kubeconf_milan). You can export the appropriate environment variables leveraged for the rest of the tutorial
(i.e., KUBECONFIG and KUBECONFIG_MILAN), and referring to their location, through the following:

export KUBECONFIG="$PWD/liqo_kubeconf_rome"
export KUBECONFIG_MILAN="$PWD/liqo_kubeconf_milan"

45

Liqo

Note

We suggest exporting the kubeconfig of the first cluster as default (i.e., KUBECONFIG), since it will be the entry point
of the virtual cluster and you will mainly interact with it.

On the first cluster, you can get the available pods by merely typing:

kubectl get pods -A

Similarly, on the second cluster, you can observe the pods in execution:

kubectl get pods -A --kubeconfig "$KUBECONFIG_MILAN"

If the above commands return each an output similar to the following, your clusters are up and ready.

NAMESPACE NAME READY STATUS ␣
→˓RESTARTS AGE
kube-system coredns-558bd4d5db-9vdr9 1/1 Running 0 ␣
→˓ 3m58s
kube-system coredns-558bd4d5db-tzdxg 1/1 Running 0 ␣
→˓ 3m58s
kube-system etcd-rome-control-plane 1/1 Running 0 ␣
→˓ 4m10s
kube-system kindnet-fcspl 1/1 Running 0 ␣
→˓ 3m58s
kube-system kindnet-q6qkm 1/1 Running 0 ␣
→˓ 3m42s
kube-system kube-apiserver-rome-control-plane 1/1 Running 0 ␣
→˓ 4m10s
kube-system kube-controller-manager-rome-control-plane 1/1 Running 0 ␣
→˓ 4m11s
kube-system kube-proxy-2c9bl 1/1 Running 0 ␣
→˓ 3m42s
kube-system kube-proxy-7nngv 1/1 Running 0 ␣
→˓ 3m58s
kube-system kube-scheduler-rome-control-plane 1/1 Running 0 ␣
→˓ 4m11s
local-path-storage local-path-provisioner-85494db59d-skd55 1/1 Running 0 ␣
→˓ 3m58s

12.2 Install Liqo

You will now install Liqo on both clusters, using the following characterizing names:

• rome: the local cluster, where you will deploy and control the applications.

• milan: the remote cluster, where part of your workloads will be offloaded to.

You can install Liqo on the Rome cluster by launching:

liqoctl install kind --cluster-name rome

This command will generate the suitable configuration for your KinD cluster and then install Liqo.

46 Chapter 12. Quick Start

Liqo

Similarly, you can install Liqo on the Milan cluster by launching:

liqoctl install kind --cluster-name milan --kubeconfig "$KUBECONFIG_MILAN"

On both clusters, you should see the following output:

INFO Kubernetes clients successfully initialized
INFO Installer initialized
INFO Cluster configuration correctly retrieved
INFO Installation parameters correctly generated
INFO All Set! You can now proceed establishing a peering (liqoctl peer --help for more␣
→˓information)

And the Liqo pods should be up and running:

kubectl get pods -n liqo

NAME READY STATUS RESTARTS AGE
liqo-auth-74c795d84c-x2p6h 1/1 Running 0 2m8s
liqo-controller-manager-6c688c777f-4lv9d 1/1 Running 0 2m8s
liqo-crd-replicator-6c64df5457-bq4tv 1/1 Running 0 2m8s
liqo-gateway-78cf7bb86b-pkdpt 1/1 Running 0 2m8s
liqo-metric-agent-5667b979c7-snmdg 1/1 Running 0 2m8s
liqo-network-manager-5b5cdcfcf7-scvd9 1/1 Running 0 2m8s
liqo-proxy-6674dd7bbd-kr2ls 1/1 Running 0 2m8s
liqo-route-7wsrx 1/1 Running 0 2m8s
liqo-route-sz75m 1/1 Running 0 2m8s

In addition, you can check the installation status, and the main Liqo configuration parameters, using:

liqoctl status

12.3 Peer two clusters

Once Liqo is installed in your clusters, you can establish new peerings. In this example, since the two API Servers are
mutually reachable, you will use the out-of-band peering approach.

First, get the peer command from the Milan cluster:

liqoctl generate peer-command --kubeconfig "$KUBECONFIG_MILAN"

Second, copy and paste the command in the Rome cluster:

liqoctl peer out-of-band milan --auth-url [redacted] --cluster-id [redacted] --auth-
→˓token [redacted]

Now, the Liqo control plane in the Rome cluster will contact the provided authentication endpoint providing the token
to the Milan cluster to get its Kubernetes identity.

You can check the peering status by running:

kubectl get foreignclusters

12.3. Peer two clusters 47

Liqo

The output should look like the following, indicating that the cross-cluster network tunnel has been established, and an
outgoing peering is currently active (i.e., the Rome cluster can offload workloads to the Milan one, but not vice versa):

NAME TYPE OUTGOING PEERING INCOMING PEERING NETWORKING AUTHENTICATION ␣
→˓AGE
milan OutOfBand Established None Established Established ␣
→˓12s

At the same time, you should see a virtual node (liqo-milan) in addition to your physical nodes:

kubectl get nodes

NAME STATUS ROLES AGE VERSION
liqo-milan Ready agent 27s v1.25.0
rome-control-plane Ready control-plane 7m6s v1.25.0
rome-worker Ready <none> 6m33s v1.25.0

In addition, you can check the peering status, and retrieve more advanced information, using:

liqoctl status peer milan

12.4 Leverage remote resources

Now, you can deploy a standard Kubernetes application in a multi-cluster environment as you would do in a single
cluster scenario (i.e. no modification is required).

12.4.1 Start a hello world application

If you want to deploy an application that is scheduled onto Liqo virtual nodes, you should first create a namespace
where your pod will be started. Then tell Liqo to make this namespace eligible for the pod offloading.

kubectl create namespace liqo-demo
liqoctl offload namespace liqo-demo

The liqoctl offload namespace command enables Liqo to offload the namespace to the remote cluster. Since no
further configuration is provided, Liqo will add a suffix to the namespace name to make it unique on the remote cluster
(see the dedicated usage page for additional information concerning namespace offloading configurations).

Note

The virtual nodes have a taint that prevents the pods from being scheduled on them. The Liqo webhook will add the
toleration for this taint to the pods created in the liqo-enabled namespaces.

Then, you can deploy a demo application in the liqo-demo namespace of the local cluster:

kubectl apply -f ./manifests/hello-world.yaml -n liqo-demo

The hello-world.yaml file represents a simple nginx service. It contains two pods running an nginx image and
a Service exposing the pods to the cluster. One pods is running in the local cluster, while the other is forced to be
scheduled on the remote cluster.

48 Chapter 12. Quick Start

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Liqo

Info

Differently from the traditional examples, the above deployment introduces an affinity constraint. This forces Ku-
bernetes to schedule the first pod (i.e. nginx-local) on a physical node and the second (i.e. nginx-remote) on
a virtual node. Virtual nodes are like traditional Kubernetes nodes, but they represent remote clusters and have the
liqo.io/type: virtual-node label.

When the affinity constraint is not specified, the Kubernetes scheduler selects the best hosting node based on the
available resources. Hence, each pod can be scheduled either in the local cluster or in the remote cluster.

Now you can check the status of the pods. The output should be similar to the one below, confirming that one nginx
pod is running locally; while the other is hosted by the virtual node (i.e., liqo-milan).

kubectl get pod -n liqo-demo -o wide

And the output should look like this:

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED␣
→˓NODE READINESS GATES
nginx-local 1/1 Running 0 10s 10.200.1.11 rome-worker <none> ␣
→˓ <none>
nginx-remote 1/1 Running 0 9s 10.202.1.10 liqo-milan <none> ␣
→˓ <none>

Check the pod connectivity

Once both pods are correctly running, it is possible to check one of the abstractions introduced by Liqo. Indeed, Liqo
enables each pod to be transparently contacted by every other pod and physical node (according to the Kubernetes
model), regardless of whether it is hosted by the local or by the remote cluster.

First, let’s retrieve the IP address of the nginx pods:

LOCAL_POD_IP=$(kubectl get pod nginx-local -n liqo-demo --template={{.status.podIP}})
REMOTE_POD_IP=$(kubectl get pod nginx-remote -n liqo-demo --template={{.status.podIP}})
echo "Local Pod IP: ${LOCAL_POD_IP} - Remote Pod IP: ${REMOTE_POD_IP}"

You can fire up a pod and run curl from inside the cluster:

kubectl run --image=curlimages/curl curl -n default -it --rm --restart=Never -- curl $
→˓{LOCAL_POD_IP}
kubectl run --image=curlimages/curl curl -n default -it --rm --restart=Never -- curl $
→˓{REMOTE_POD_IP}

Both commands should lead to a successful outcome (i.e., return a demo web page), regardless of whether each pod is
executed locally or remotely.

12.4. Leverage remote resources 49

Liqo

12.4.2 Expose the pods through a Service

The above hello-world.yaml manifest additionally creates a Service which is designed to serve traffic to the previ-
ously deployed pods. This is a traditional Kubernetes Service and can work with Liqo with no modifications.

Indeed, inspecting the Service, it is possible to observe that both nginx pods are correctly specified as endpoints.
Nonetheless, it is worth noticing that the first endpoint (i.e. 10.200.1.10:80 in this example) refers to a pod running
in the local cluster, while the second one (i.e. 10.202.1.9:80) points to a pod hosted by the remote cluster.

kubectl describe service liqo-demo -n liqo-demo

Name: liqo-demo
Namespace: liqo-demo
Labels: <none>
Annotations: <none>
Selector: app=liqo-demo
Type: ClusterIP
IP Family Policy: SingleStack
IP Families: IPv4
IP: 10.94.41.143
IPs: 10.94.41.143
Port: web 80/TCP
TargetPort: web/TCP
Endpoints: 10.200.1.11:80,10.202.1.10:80
Session Affinity: None
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal SuccessfulReflection 51s (x2 over 51s) liqo-service-reflection Successfully␣

→˓reflected object to cluster "milan"

Check the Service connectivity

It is now possible to contact the Service: as usual, Kubernetes will forward the HTTP request to one of the available
back-end pods. Additionally, all traditional mechanisms still work seamlessly (e.g. DNS discovery), even though one
of the pods is actually running in a remote cluster.

You can fire up a pod and run curl from inside the cluster:

kubectl run --image=curlimages/curl curl -n default -it --rm --restart=Never -- \
curl --silent liqo-demo.liqo-demo.svc.cluster.local | grep 'Server'

Note

Executing the previous command multiple times, you will observe that part of the requests are answered by the pod
running in the local cluster, and in part by that in the remote cluster (i.e., the Server value changes).

50 Chapter 12. Quick Start

https://kubernetes.io/docs/concepts/services-networking/service/

Liqo

12.5 Play with a microservice application

It is very common in a cloud-based environment to deploy microservices applications composed of many pods inter-
acting among each other. This pattern is transparently supported by Liqo and the virtual cluster abstraction.

You can play with a microservices application provided by Google, which includes multiple cooperating Services
leveraging different networking protocols:

kubectl apply -k ./manifests/demo-application -n liqo-demo

By default, Kubernetes schedules each pod either in the local or in the remote cluster, optimizing each deployment
based on the available resources. However, you can play with affinity constraints to force Kubernetes to schedule of
each component in a specific location, and see that everything continues to work smoothly. Specifically, the manifest
above forces the frontend component to be executed in the local cluster, as this is required to enable port-forwarding,
which is leveraged below.

Each demo component is exposed as a Service and accessed by other components. However, given that nobody knows,
a priori, where each Service will be deployed (either locally or in the remote cluster), Liqo replicates all Kubernetes
Services across both clusters, although the corresponding pod may be running only in one location. Hence, each
microservice deployed across clusters can reach the others seamlessly: independently of the cluster a pod is deployed
in, each pod can contact other Services and leverage the traditional Kubernetes discovery mechanisms (e.g., DNS
discovery and environment variables).

Additionally, several other objects (e.g. ConfigMaps and Secrets) inside a namespace are replicated in the remote
cluster within the twin namespace, thus, ensuring that complex applications can work seamlessly across clusters.

12.5.1 Observe the application deployment

Once the demo application manifest is applied, you can observe the creation of the different pods:

watch kubectl get pods -n liqo-demo -o wide

At steady-state, you should see an output similar to the following. Different pods may be hosted by either the local nodes
(rome-worker in the example below) or remote cluster (liqo-milan in the example below), depending on the scheduling
decisions.

NAME READY STATUS RESTARTS AGE IP ␣
→˓ NODE NOMINATED NODE READINESS GATES
adservice-84cdf76d7d-6s8pq 1/1 Running 0 5m1s 10.
→˓202.1.11 liqo-milan <none> <none>
cartservice-5c9c9c7b4-w49gr 1/1 Running 0 5m1s 10.
→˓202.1.12 liqo-milan <none> <none>
checkoutservice-6cb9bb8cd8-5w2ht 1/1 Running 0 5m1s 10.
→˓202.1.13 liqo-milan <none> <none>
currencyservice-7d4bd86676-5b5rq 1/1 Running 0 5m1s 10.
→˓202.1.14 liqo-milan <none> <none>
emailservice-c9b45cdb-6zjrk 1/1 Running 0 5m1s 10.
→˓202.1.15 liqo-milan <none> <none>
frontend-58b9b98d84-hg4xz 1/1 Running 0 5m1s 10.
→˓200.1.13 rome-worker <none> <none>
loadgenerator-5f8cd58cd4-wvqqq 1/1 Running 0 5m1s 10.
→˓202.1.16 liqo-milan <none> <none>
nginx-local 1/1 Running 0 7m35s 10.
→˓200.1.11 rome-worker <none> <none>

(continues on next page)

12.5. Play with a microservice application 51

https://github.com/GoogleCloudPlatform/microservices-demo

Liqo

(continued from previous page)

nginx-remote 1/1 Running 0 7m34s 10.
→˓202.1.10 liqo-milan <none> <none>
paymentservice-69558cf7bb-v4zjw 1/1 Running 0 5m 10.
→˓202.1.17 liqo-milan <none> <none>
productcatalogservice-55c58b57cb-k8mfq 1/1 Running 0 5m 10.
→˓202.1.18 liqo-milan <none> <none>
recommendationservice-55cd66cf64-6fz9w 1/1 Running 0 5m 10.
→˓202.1.19 liqo-milan <none> <none>
redis-cart-5d45978b94-wjd97 1/1 Running 0 5m 10.
→˓202.1.20 liqo-milan <none> <none>
shippingservice-5df47fc86-f867j 1/1 Running 0 4m59s 10.
→˓202.1.21 liqo-milan <none> <none>

12.5.2 Access the demo application

Once the deployment is up and running, you can start using the demo application and verify that everything works
correctly, even if its components are distributed across multiple Kubernetes clusters.

By default, the frontend web-page is exposed through a LoadBalancer Service, which can be inspected using:

kubectl get service -n liqo-demo frontend-external

Leverage kubectl port-forward to forward the requests from your local machine (i.e., http://localhost:8080)
to the frontend Service:

kubectl port-forward -n liqo-demo service/frontend-external 8080:80

Open the http://localhost:8080 page in your browser and enjoy the demo application.

12.6 Tear down the playground

Our example is finished; now we can remove all the created resources and tear down the playground.

12.6.1 Unoffload namespaces

Before starting the uninstallation process, make sure that all namespaces are unoffloaded:

liqoctl unoffload namespace liqo-demo

Every pod that was offloaded to a remote cluster is going to be rescheduled onto the local cluster.

52 Chapter 12. Quick Start

http://localhost:8080

Liqo

12.6.2 Revoke peerings

Similarly, make sure that all the peerings are revoked:

liqoctl unpeer out-of-band milan

At the end of the process, the virtual node is removed from the local cluster.

12.6.3 Uninstall Liqo

Now you can uninstall Liqo from your clusters with liqoctl:

liqoctl uninstall
liqoctl uninstall --kubeconfig="$KUBECONFIG_MILAN"

Purge

By default the Liqo CRDs will remain in the cluster, but they can be removed with the --purge flag:

liqoctl uninstall --purge
liqoctl uninstall --purge --kubeconfig="$KUBECONFIG_MILAN"

12.6.4 Destroy clusters

To teardown the KinD clusters, you can issue:

kind delete cluster --name rome
kind delete cluster --name milan

12.6. Tear down the playground 53

Liqo

54 Chapter 12. Quick Start

CHAPTER

THIRTEEN

OFFLOADING WITH POLICIES

This tutorial aims to guide you through a tour to learn how to use the core Liqo features. You will learn how to tune
namespace offloading, and specify the target clusters through the cluster selector concept.

More specifically, you will configure a scenario composed of a single entry point cluster leveraged for the deployment
of the applications (i.e., the Venice cluster, located in north Italy) and two worker clusters characterized by different
geographical regions (i.e., the Florence and Naples clusters, respectively located in center and south Italy). Then, you
will offload a given namespace (and the applications contained therein) to a subset of the worker clusters (i.e., only to
the Naples cluster), while allowing pods to be also scheduled on the local cluster (i.e., the Venice one).

13.1 Provision the playground

First, check that you are compliant with the requirements.

Then, let’s open a terminal on your machine and launch the following script, which creates the three above-mentioned
clusters with KinD and installs Liqo on all of them. Each cluster is made by a single combined control-plane + worker
node.

git clone https://github.com/liqotech/liqo.git
cd liqo
git checkout master
cd examples/offloading-with-policies
./setup.sh

Export the kubeconfigs environment variables to use them in the rest of the tutorial:

export KUBECONFIG="$PWD/liqo_kubeconf_venice"
export KUBECONFIG_FLORENCE="$PWD/liqo_kubeconf_florence"
export KUBECONFIG_NAPLES="$PWD/liqo_kubeconf_naples"

Note

We suggest exporting the kubeconfig of the first cluster as default (i.e., KUBECONFIG), since it will be the entry point
of the virtual cluster and you will mainly interact with it.

At this point, you should have three clusters with Liqo installed on them. The setup script named them venice, florence
and naples, and respectively configured the following cluster labels:

• venice: topology.liqo.io/region=north

• florence: topology.liqo.io/region=center

55

Liqo

• naples: topology.liqo.io/region=south

You can check that the clusters are correctly labeled through:

liqoctl status
liqoctl --kubeconfig $KUBECONFIG_FLORENCE status
liqoctl --kubeconfig $KUBECONFIG_NAPLES status

These labels will be propagated to the virtual nodes corresponding to each cluster. In this way, you can easily identify
the clusters through their characterizing labels, and define the appropriate scheduling policies.

13.2 Peer the clusters

Once Liqo is installed in your clusters, you can establish new peerings. In this example, since the two API Servers are
mutually reachable, you will use the out-of-band peering approach.

To implement the desired scenario, let’s first retrieve the peer command from the Florence and Naples clusters:

PEER_FLORENCE=$(liqoctl generate peer-command --only-command --kubeconfig $KUBECONFIG_
→˓FLORENCE)
PEER_NAPLES=$(liqoctl generate peer-command --only-command --kubeconfig $KUBECONFIG_
→˓NAPLES)

Then, establish the peerings from the Venice cluster:

echo "$PEER_FLORENCE" | bash
echo "$PEER_NAPLES" | bash

When the above commands return successfully, you can check the peering status by running:

kubectl get foreignclusters

The output should look like the following, indicating that an outgoing peering is currently active towards both the
Florence and the Naples clusters, as well as the cross-cluster network tunnels have been established:

NAME TYPE OUTGOING PEERING INCOMING PEERING NETWORKING ␣
→˓AUTHENTICATION AGE
florence OutOfBand Established None Established Established ␣
→˓ 111s
naples OutOfBand Established None Established Established ␣
→˓ 98s

Additionally, you should have two new virtual nodes in the Venice cluster, characterized by the install-time provided
labels:

kubectl get node --selector=liqo.io/type=virtual-node --show-labels

NAME STATUS ROLES AGE VERSION LABELS
liqo-florence Ready agent 19s v1.25.0 liqo.io/remote-cluster-id=5f3b5abd-cccb-
→˓4f75-931b-d6b1ca95fa7d,liqo.io/type=virtual-node,topology.liqo.io/region=center
liqo-naples Ready agent 14s v1.25.0 liqo.io/remote-cluster-id=edc8c24a-4c11-
→˓48b8-8b0e-2a95cf7464af,liqo.io/type=virtual-node,topology.liqo.io/region=south

56 Chapter 13. Offloading with Policies

Liqo

Note

Some of the default labels were omitted for the sake of clarity.

13.3 Tune namespace offloading

Now, let’s suppose you want to deploy an application that needs to be scheduled in the north and in the south region,
but not in the center one. This constraint needs to be respected at the infrastructural level: the dev team does not need
to be aware of required affinities and/or node selectors, nor it should be able to bypass them.

First, you should create a new namespace in the Venice cluster, which will host the application:

kubectl create namespace liqo-demo

Then, enable Liqo offloading for that namespace:

liqoctl offload namespace liqo-demo \
--namespace-mapping-strategy EnforceSameName \
--pod-offloading-strategy LocalAndRemote \
--selector 'topology.liqo.io/region=south'

The above command configures the following aspects (see the dedicated usage page for additional information con-
cerning namespace offloading configurations):

• the liqo-demo namespace is replicated with the same name in the other clusters.

• the liqo-demo namespace, and the contained resources, are offloaded only to the clusters with the topology.
liqo.io/region=south label.

• the pods living in the liqo-demo namespace are free to be scheduled onto both physical and virtual nodes.

The NamespaceOffloading resource created by liqoctl in the liqo-demo namespace exposes the status of the offloading
process, including a global OffloadingPhase, which is expected to be Ready, and a list of RemoteNamespaceConditions,
one for each remote cluster.

In this case:

• the Florence cluster has not been selected to offload the namespace liqo-demo, since it does not match the
cluster selector;

• the Naples cluster has been selected to offload the namespace liqo-demo, and the namespace has been correctly
created.

kubectl get namespaceoffloadings offloading -n liqo-demo -o yaml

...
status:
observedGeneration: 1
offloadingPhase: Ready
remoteNamespaceName: liqo-demo
remoteNamespacesConditions:
florence-7ab115:
- lastTransitionTime: "2023-01-30T09:50:05Z"
message: The remote cluster has not been selected through the ClusterSelector field

(continues on next page)

13.3. Tune namespace offloading 57

Liqo

(continued from previous page)

reason: ClusterNotSelected
status: "False"
type: OffloadingRequired

naples-5eada1:
- lastTransitionTime: "2023-01-30T09:50:05Z"
message: The remote cluster has been selected through the ClusterSelector field
reason: ClusterSelected
status: "True"
type: OffloadingRequired

- lastTransitionTime: "2023-01-30T09:50:05Z"
message: Namespace correctly offloaded to the remote cluster
reason: NamespaceCreated
status: "True"
type: Ready

Indeed, if you query for the namespaces in the Naples cluster, you should see the following output, confirming that the
remote namespace has been correctly created by Liqo:

kubectl get namespaces liqo-demo --kubeconfig="$KUBECONFIG_NAPLES"

NAME STATUS AGE
liqo-demo Active 70s

Instead, the same command executed in the Florence cluster should return an error, as the namespace has not been
replicated:

kubectl get namespaces liqo-demo --kubeconfig="$KUBECONFIG_FLORENCE"

Error from server (NotFound): namespaces "liqo-demo" not found

13.4 Deploy applications

All constraints specified during namespace offloading are automatically enforced by Liqo, and merged with other pod-
level specifications.

To verify this, you can now create two deployments in the liqo-demo namespace, characterized by additional NodeAf-
finity constraints. More precisely, one (app-south) is forced to be scheduled onto the virtual node representing the
Naples cluster, while the other (app-center) is forced onto the Florence virtual cluster (which is incompatible with
the namespace-level constraints).

kubectl apply -f ./manifests/deploy.yaml -n liqo-demo

Checking the pod status, it is possible to verify that one has been scheduled onto the Naples cluster, and it is correctly
running, while the other remained Pending due to conflicting requirements (i.e., no node is available to satisfy all its
constraints).

kubectl get pod -n liqo-demo -o wide

58 Chapter 13. Offloading with Policies

Liqo

NAME READY STATUS RESTARTS AGE IP NODE ␣
→˓ NOMINATED NODE READINESS GATES
app-center-58d8ff79c9-xf6pz 0/1 Pending 0 27s <none> <none> ␣
→˓ <none> <none>
app-south-545766885-zn4nx 1/1 Running 0 27s 10.204.0.13 liqo-
→˓naples <none> <none>

Note

You can remove the conflicting node affinity from the app-center deployment, and check that the generated pod
gets scheduled onto either the Venice (i.e., locally) or the Naples cluster, as constrained by the namespace offloading
configuration.

13.5 Tear down the playground

Our example is finished; now we can remove all the created resources and tear down the playground.

13.5.1 Unoffload namespaces

Before starting the uninstallation process, make sure that all namespaces are unoffloaded:

liqoctl unoffload namespace liqo-demo

Every pod that was offloaded to a remote cluster is going to be rescheduled onto the local cluster.

13.5.2 Revoke peerings

Similarly, make sure that all the peerings are revoked:

liqoctl unpeer out-of-band florence
liqoctl unpeer out-of-band naples

At the end of the process, the virtual nodes are removed from the local cluster.

13.5.3 Uninstall Liqo

Now you can uninstall Liqo from your clusters with liqoctl:

liqoctl uninstall
liqoctl uninstall --kubeconfig="$KUBECONFIG_FLORENCE"
liqoctl uninstall --kubeconfig="$KUBECONFIG_NAPLES"

Purge

By default the Liqo CRDs will remain in the cluster, but they can be removed with the --purge flag:

13.5. Tear down the playground 59

Liqo

liqoctl uninstall --purge
liqoctl uninstall --kubeconfig="$KUBECONFIG_FLORENCE" --purge
liqoctl uninstall --kubeconfig="$KUBECONFIG_NAPLES" --purge

13.5.4 Destroy clusters

To teardown the KinD clusters, you can issue:

kind delete cluster --name venice
kind delete cluster --name florence
kind delete cluster --name naples

60 Chapter 13. Offloading with Policies

CHAPTER

FOURTEEN

OFFLOADING A SERVICE

In this tutorial you will learn how to create a multi-cluster Service and how to consume it from each connected cluster.

Specifically, you will deploy an application in a first cluster (London) and then offload the corresponding Service and
transparently consume it from a second cluster (New York).

14.1 Provision the playground

First, check that you are compliant with the requirements.

Then, let’s open a terminal on your machine and launch the following script, which creates the two above-mentioned
clusters with KinD and installs Liqo on them. Each cluster is made by a single combined control-plane + worker node.

git clone https://github.com/liqotech/liqo.git
cd liqo
git checkout master
cd examples/service-offloading
./setup.sh

Export the kubeconfigs environment variables to use them in the rest of the tutorial:

export KUBECONFIG="$PWD/liqo_kubeconf_london"
export KUBECONFIG_NEWYORK="$PWD/liqo_kubeconf_newyork"

Note

We suggest exporting the kubeconfig of the first cluster as default (i.e., KUBECONFIG), since it will be the entry point
of the virtual cluster and you will mainly interact with it.

At this point, you should have two clusters with Liqo installed on them. The setup script named them london and
newyork.

61

Liqo

14.2 Peer the clusters

Once Liqo is installed in your clusters, you can establish new peerings. In this example, since the two API Servers are
mutually reachable, you will use the out-of-band peering approach.

To implement the desired scenario, let’s first retrieve the peer command from the New York cluster:

PEER_NEW_YORK=$(liqoctl generate peer-command --only-command --kubeconfig $KUBECONFIG_
→˓NEWYORK)

Then, establish the peering from the London cluster:

echo "$PEER_NEW_YORK" | bash

When the above command returns successfully, you can check the peering status by running:

kubectl get foreignclusters

The output should look like the following, indicating that an outgoing peering is currently active towards the New York
cluster, as well as that the cross-cluster network tunnel has been established:

NAME TYPE OUTGOING PEERING INCOMING PEERING NETWORKING AUTHENTICATION␣
→˓ AGE
newyork OutOfBand Established None Established Established ␣
→˓ 61s

14.3 Offload a service

Now, let’s deploy a simple application composed of a Deployment and a Service in the London cluster.

First, you should create a hosting namespace in the London cluster:

kubectl create namespace liqo-demo

Then, deploy the application in the London cluster:

kubectl apply -f manifests/app.yaml -n liqo-demo

At this moment, you have an HTTP application serving JSON data through a Service, and running in the London cluster
(i.e., locally). If you look at the New York cluster, you will not see the application yet.

To make it visible, you need to enable the Liqo offloading of the Services in the desired namespace to the New York
cluster:

liqoctl offload namespace liqo-demo \
--namespace-mapping-strategy EnforceSameName \
--pod-offloading-strategy Local

This command enables the offloading of the Services in the London cluster to the New York cluster and sets:

• the namespace mapping strategy to EnforceSameName, which means that the namespace in the remote cluster is
created with the same name as of the local one. This is particularly useful when you want to consume the Services
in the remote cluster using the Kubernetes DNS service discovery (i.e. with svc-name.namespace-name.svc.
cluster.local).

62 Chapter 14. Offloading a Service

Liqo

• the pod offloading strategy to Local, which means that the pods running in this namespace will be kept local and
not scheduled on virtual nodes (i.e., no pod is offloaded to remote clusters).

Refer to the dedicated usage page for additional information concerning namespace offloading configurations.

Some seconds later, you should see that the Service has been replicated by the resource reflection process, and is now
available in the New York cluster:

kubectl get services --namespace liqo-demo --kubeconfig "$KUBECONFIG_NEWYORK"

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
flights-service ClusterIP 10.81.139.132 <none> 7999/TCP 14s

The Service is characterized by a different ClusterIP address in the two clusters, since each cluster handles it indepen-
dently. Additionally, you can also check that there is no application pod running in the New York cluster:

kubectl get pods --namespace liqo-demo --kubeconfig "$KUBECONFIG_NEWYORK"

No resources found in liqo-demo namespace.

14.3.1 Consume the service

Let’s now consume the Service from both clusters from a different pod (e.g., a temporary shell).

Starting from the London cluster:

kubectl run consumer --rm -i --tty --image dwdraju/alpine-curl-jq -- /bin/sh

When the shell is ready, you can access the Service with curl:

curl -s -H 'accept: application/json' http://flights-service.liqo-demo:7999/schedule |␣
→˓jq .

A similar result is obtained executing the same command in a shell running in the New York cluster, although the
backend pod is effectively running in the London cluster:

kubectl run consumer --rm -i --tty --image dwdraju/alpine-curl-jq \
--kubeconfig $KUBECONFIG_NEWYORK -- /bin/sh

curl -s -H 'accept: application/json' http://flights-service.liqo-demo:7999/schedule |␣
→˓jq .

This quick example demonstrated how Liqo can upgrade ClusterIP Services to multi-cluster Services, allowing your
local pods to transparently serve traffic originating from remote clusters with no additional configuration neither in the
local cluster and/or applications nor in the remote ones.

14.3. Offload a service 63

Liqo

14.4 Tear down the playground

Our example is finished; now we can remove all the created resources and tear down the playground.

14.4.1 Unoffload namespaces

Before starting the uninstallation process, make sure that all namespaces are unoffloaded:

liqoctl unoffload namespace liqo-demo

Every pod that was offloaded to a remote cluster is going to be rescheduled onto the local cluster.

14.4.2 Revoke peerings

Similarly, make sure that all the peerings are revoked:

liqoctl unpeer out-of-band newyork

At the end of the process, the virtual node is removed from the local cluster.

14.4.3 Uninstall Liqo

Now you can uninstall Liqo from your clusters with liqoctl:

liqoctl uninstall
liqoctl uninstall --kubeconfig="$KUBECONFIG_NEWYORK"

Purge

By default the Liqo CRDs will remain in the cluster, but they can be removed with the --purge flag:

liqoctl uninstall --purge
liqoctl uninstall --kubeconfig="$KUBECONFIG_NEWYORK" --purge

14.4.4 Destroy clusters

To teardown the KinD clusters, you can issue:

kind delete cluster --name london
kind delete cluster --name newyork

64 Chapter 14. Offloading a Service

CHAPTER

FIFTEEN

STATEFUL APPLICATIONS

This tutorial demonstrates how to use the core Liqo features to deploy stateful applications. In particular, you will deploy
a multi-master mariadb-galera database across a multi-cluster environment (composed of two clusters, respectively
identified as Turin and Lyon), hence replicating the data in multiple regions.

15.1 Provision the playground

First, check that you are compliant with the requirements.

Then, let’s open a terminal on your machine and launch the following script, which creates the two above-mentioned
clusters with KinD and installs Liqo on them. Each cluster is made by a single combined control-plane + worker node.

git clone https://github.com/liqotech/liqo.git
cd liqo
git checkout master
cd examples/stateful-applications
./setup.sh

Export the kubeconfigs environment variables to use them in the rest of the tutorial:

export KUBECONFIG="$PWD/liqo_kubeconf_turin"
export KUBECONFIG_LYON="$PWD/liqo_kubeconf_lyon"

Note

The install script creates two clusters with no overlapping pod CIDRs. This is required by the mariadb-galera appli-
cation to work correctly. Given it needs to know the real IP of the connected masters, it will not work correctly when
natting is enabled.

Note

We suggest exporting the kubeconfig of the first cluster as default (i.e., KUBECONFIG), since it will be the entry point
of the virtual cluster and you will mainly interact with it.

65

Liqo

15.2 Peer the clusters

Once Liqo is installed in your clusters, you can establish new peerings. In this example, since the two API Servers are
mutually reachable, you will use the out-of-band peering approach.

To implement the desired scenario, let’s first retrieve the peer command from the Lyon cluster:

PEER_LYON=$(liqoctl generate peer-command --only-command --kubeconfig $KUBECONFIG_LYON)

Then, establish the peering from the Turin cluster:

echo "$PEER_LYON" | bash

When the above command returns successfully, you can check the peering status by running:

kubectl get foreignclusters

The output should look like the following, indicating that an outgoing peering is currently active towards the Lyon
cluster„ as well as that the cross-cluster network tunnel has been established:

NAME TYPE OUTGOING PEERING INCOMING PEERING NETWORKING AUTHENTICATION ␣
→˓AGE
lyon OutOfBand Established None Established Established ␣
→˓1m28s

15.3 Deploy a stateful application

In this step, you will deploy a mariadb-galera database using the Bitnami helm chart.

First, you need to add the helm repository:

helm repo add bitnami https://charts.bitnami.com/bitnami

Then, create the namespace and offload it to remote clusters:

kubectl create namespace liqo-demo
liqoctl offload namespace liqo-demo --namespace-mapping-strategy EnforceSameName

This command will create a twin liqo-demo namespace in the Lyon cluster. Refer to the dedicated usage page for
additional information concerning namespace offloading configurations.

Now, deploy the helm chart:

helm install db bitnami/mariadb-galera -n liqo-demo -f manifests/values.yaml

The release is configured to:

• have two replicas;

• spread the replicas across the cluster (i.e., a hard pod anti-affinity is set);

• use the liqo virtual storage class.

Check that these constraints are met by typing:

66 Chapter 15. Stateful Applications

https://bitnami.com/stack/mariadb-galera/helm

Liqo

kubectl get pods -n liqo-demo -o wide

After a while (the startup process might require a few minutes), you should see two replicas of a StatefulSet spread over
two different nodes (one local and one remote).

NAME READY STATUS RESTARTS AGE IP NODE ␣
→˓ NOMINATED NODE READINESS GATES
db-mariadb-galera-0 1/1 Running 0 3m13s 10.210.0.15 liqo-lyon ␣
→˓ <none> <none>
db-mariadb-galera-1 1/1 Running 0 2m6s 10.200.0.17 turin-control-
→˓plane <none> <none>

15.4 Consume the database

When the database is up and running, check that it is operating as expected executing a simple SQL client in your
cluster:

kubectl run db-mariadb-galera-client --rm --tty -i \
--restart='Never' --namespace default \
--image docker.io/bitnami/mariadb-galera:10.6.7-debian-10-r56 \
--command \
-- mysql -h db-mariadb-galera.liqo-demo -uuser -ppassword my_database

And then create an example table and insert some data:

CREATE TABLE People (
PersonID int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)

);

INSERT INTO People
(PersonID, LastName, FirstName, Address, City)
VALUES
(1, 'Smith', 'John', '123 Main St', 'Anytown');

You are now able to query the database and grab the data:

SELECT * FROM People;

+----------+----------+-----------+-------------+---------+
| PersonID | LastName | FirstName | Address | City |
+----------+----------+-----------+-------------+---------+
| 1 | Smith | John | 123 Main St | Anytown |
+----------+----------+-----------+-------------+---------+
1 row in set (0.000 sec)

15.4. Consume the database 67

Liqo

15.4.1 Database failures toleration

With this setup the applications running on a cluster can tolerate failures of the local database replica.

This can be checked deleting one of the replicas:

kubectl delete pod db-mariadb-galera-0 -n liqo-demo

And querying again for your data:

kubectl run db-mariadb-galera-client --rm --tty -i \
--restart='Never' --namespace default \
--image docker.io/bitnami/mariadb-galera:10.6.7-debian-10-r56 \
--command \
-- mysql -h db-mariadb-galera.liqo-demo -uuser -ppassword my_database \
--execute "SELECT * FROM People;"

Pro-tip

Try deleting the other replica and query again.

NOTE: at least one of the two replicas should be always running, be careful deleting all of them.

Note

You can run exactly the same commands to query the data from the other cluster, and you will get the same results.

15.5 Tear down the playground

Our example is finished; now we can remove all the created resources and tear down the playground.

15.5.1 Unoffload namespaces

Before starting the uninstallation process, make sure that all namespaces are unoffloaded:

liqoctl unoffload namespace liqo-demo

Every pod that was offloaded to a remote cluster is going to be rescheduled onto the local cluster.

15.5.2 Revoke peerings

Similarly, make sure that all the peerings are revoked:

liqoctl unpeer out-of-band lyon

At the end of the process, the virtual node is removed from the local cluster.

68 Chapter 15. Stateful Applications

Liqo

15.5.3 Uninstall Liqo

Now you can remove Liqo from your clusters with liqoctl:

liqoctl uninstall
liqoctl uninstall --kubeconfig="$KUBECONFIG_LYON"

Purge

By default the Liqo CRDs will remain in the cluster, but they can be removed with the --purge flag:

liqoctl uninstall --purge
liqoctl uninstall --kubeconfig="$KUBECONFIG_LYON" --purge

15.5.4 Destroy clusters

To teardown the KinD clusters, you can issue:

kind delete cluster --name turin
kind delete cluster --name lyon

15.5. Tear down the playground 69

Liqo

70 Chapter 15. Stateful Applications

CHAPTER

SIXTEEN

GLOBAL INGRESS

In this tutorial, you will learn how to leverage Liqo and K8GB to deploy and expose a multi-cluster application through
a global ingress. More in detail, this enables improved load balancing and distribution of the external traffic towards
the application replicated across multiple clusters.

The figure below outlines the high-level scenario, with a client consuming an application from either cluster 1 (e.g.,
located in EU) or cluster 2 (e.g., located in the US), based on the endpoint returned by the DNS server.

16.1 Provision the playground

First, check that you are compliant with the requirements. Additionally, this example requires k3d to be installed in
your system. Specifically, this tool is leveraged instead of KinD to match the K8GB Sample Demo.

To provision the playground, clone the Liqo repository and run the setup script:

git clone https://github.com/liqotech/liqo.git
cd liqo
git checkout master
cd examples/global-ingress
./setup.sh

The setup script creates three k3s clusters and deploys the appropriate infrastructural application on top of them, as
detailed in the following:

• edgedns: this cluster will be used to deploy the DNS service. In a production environment, this should be an
external DNS service (e.g. AWS Route53). It includes the Bind Server (manifests in manifests/edge folder).

• gslb-eu and gslb-us: these clusters will be used to deploy the application. They include:

– ExternalDNS: it is responsible for configuring the DNS entries.

– Ingress Nginx: it is responsible for handling the local ingress traffic.

– K8GB: it configures the multi-cluster ingress.

– Liqo: it enables the application to spread across multiple clusters, and takes care of reflecting the required
resources.

Export the kubeconfigs environment variables to use them in the rest of the tutorial:

export KUBECONFIG_DNS=$(k3d kubeconfig write edgedns)
export KUBECONFIG=$(k3d kubeconfig write gslb-eu)
export KUBECONFIG_US=$(k3d kubeconfig write gslb-us)

71

https://www.k8gb.io/
https://k3d.io/v5.4.1/#installation
https://www.k8gb.io/docs/local.html#sample-demo
https://github.com/liqotech/liqo
https://github.com/kubernetes-sigs/external-dns
https://kubernetes.github.io/ingress-nginx/
https://www.k8gb.io/

Liqo

Note

We suggest exporting the kubeconfig of the gslb-eu as default (i.e., KUBECONFIG), since it will be the entry point of the
virtual cluster and you will mainly interact with it.

16.2 Peer the clusters

Once Liqo is installed in your clusters, you can establish new peerings. In this example, since the two API Servers are
mutually reachable, you will use the out-of-band peering approach.

Specifically, to implement the desired scenario, you should enable a peering from the gslb-eu cluster to the gslb-us
cluster. This will allow Liqo to offload workloads and reflect services from the first cluster to the second cluster.

To proceed, first generate a new peer command from the gslb-us cluster:

PEER_US=$(liqoctl generate peer-command --only-command --kubeconfig $KUBECONFIG_US)

And then, run the generated command from the gslb-eu cluster:

echo "$PEER_US" | bash

When the above command returns successfully, you can check the peering status by running:

kubectl get foreignclusters

The output should look like the following, indicating that an outgoing peering is currently active towards the gslb-us
cluster, as well as that the cross-cluster network tunnel has been established:

NAME TYPE OUTGOING PEERING INCOMING PEERING NETWORKING AUTHENTICATION␣
→˓ AGE
gslb-us OutOfBand Established None Established Established ␣
→˓ 57s

Additionally, you should see a new virtual node (liqo-gslb-us) in the gslb-eu cluster, and representing the whole
gslb-us cluster. Every pod scheduled onto this node will be automatically offloaded to the remote cluster by Liqo.

kubectl get node --selector=liqo.io/type=virtual-node

The output should be similar to:

NAME STATUS ROLES AGE VERSION
liqo-gslb-us Ready agent 14s v1.25.0+k3s1

72 Chapter 16. Global Ingress

Liqo

16.3 Deploy an application

Now that the Liqo peering is established, and the virtual node is ready, it is possible to proceed deploying the podinfo
demo application. This application serves a web-page showing different information, including the name of the pod;
hence, easily identifying which replica is generating the HTTP response.

First, create a hosting namespace in the gslb-eu cluster, and offload it to the remote cluster through Liqo.

kubectl create namespace podinfo
liqoctl offload namespace podinfo --namespace-mapping-strategy EnforceSameName

At this point, it is possible to deploy the podinfo helm chart in the podinfo namespace:

helm upgrade --install podinfo --namespace podinfo \
podinfo/podinfo -f manifests/values/podinfo.yaml

This chart creates a Deployment with a custom affinity to ensure that the two frontend replicas are scheduled on different
nodes and clusters:

affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: node-role.kubernetes.io/control-plane
operator: DoesNotExist

podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app.kubernetes.io/name
operator: In
values:
- podinfo

topologyKey: "kubernetes.io/hostname"

Additionally, it creates an Ingress resource configured with the k8gb.io/strategy: roundRobin annotation. This
annotation will instruct the K8GB Global Ingress Controller to distribute the traffic across the different clusters.

16.4 Check application spreading

Let’s now check that Liqo replicated the ingress resource in both clusters and that each Nginx Ingress Controller was
able to assign them the correct IPs (different for each cluster).

Note

You can see the output for the second cluster appending the --kubeconfig $KUBECONFIG_US flag to each command.

kubectl get ingress -n podinfo

The output in the gslb-eu cluster should be similar to:

16.3. Deploy an application 73

https://github.com/stefanprodan/podinfo
https://www.k8gb.io/docs/ingress_annotations.html

Liqo

NAME CLASS HOSTS ADDRESS PORTS AGE
podinfo nginx liqo.cloud.example.com 172.19.0.3,172.19.0.4 80 6m9s

While the output in the gslb-us cluster should be similar to:

NAME CLASS HOSTS ADDRESS PORTS AGE
podinfo nginx liqo.cloud.example.com 172.19.0.5,172.19.0.6 80 6m16s

With reference to the output above, the liqo.cloud.example.com hostname is served in the demo environment on:

• 172.19.0.3, 172.19.0.4: addresses exposed by cluster gslb-eu

• 172.19.0.5, 172.19.0.6: addresses exposed by cluster gslb-us

Each local K8GB installation creates a Gslb resource with the Ingress information and the given strategy (RoundRobin
in this case), and ExternalDNS populates the DNS records accordingly.

On the gslb-eu cluster, the command:

kubectl get gslbs.k8gb.absa.oss -n podinfo podinfo -o yaml

should return an output along the lines of:

apiVersion: k8gb.absa.oss/v1beta1
kind: Gslb
metadata:
annotations:
k8gb.io/strategy: roundRobin

name: podinfo
namespace: podinfo

spec:
ingress:
ingressClassName: nginx
rules:
- host: liqo.cloud.example.com
http:
paths:
- backend:

service:
name: podinfo
port:
number: 9898

path: /
pathType: ImplementationSpecific

strategy:
dnsTtlSeconds: 30
splitBrainThresholdSeconds: 300
type: roundRobin

status:
geoTag: eu
healthyRecords:
liqo.cloud.example.com:
- 172.19.0.3
- 172.19.0.4
- 172.19.0.5

(continues on next page)

74 Chapter 16. Global Ingress

Liqo

(continued from previous page)

- 172.19.0.6
serviceHealth:
liqo.cloud.example.com: Healthy

Similarly, when issuing the command from the gslb-us cluster:

kubectl get gslbs.k8gb.absa.oss -n podinfo podinfo -o yaml --kubeconfig $KUBECONFIG_US

apiVersion: k8gb.absa.oss/v1beta1
kind: Gslb
metadata:
annotations:
k8gb.io/strategy: roundRobin

name: podinfo
namespace: podinfo

spec:
ingress:
ingressClassName: nginx
rules:
- host: liqo.cloud.example.com
http:
paths:
- backend:

service:
name: podinfo
port:
number: 9898

path: /
pathType: ImplementationSpecific

strategy:
dnsTtlSeconds: 30
splitBrainThresholdSeconds: 300
type: roundRobin

status:
geoTag: us
healthyRecords:
liqo.cloud.example.com:
- 172.19.0.5
- 172.19.0.6
- 172.19.0.3
- 172.19.0.4

serviceHealth:
liqo.cloud.example.com: Healthy

In both clusters, the Gslb resources are pretty identical; they only differ for the geoTag field. The resource status also
reports:

• the serviceHealth status, that should be Healthy for both clusters

• the list of IPs exposing the HTTP service: they are the IPs of the nodes of both clusters since the Nginx Ingress
Controller is deployed in HostNetwork DaemonSet mode.

16.4. Check application spreading 75

Liqo

16.5 Check service reachability

Since podinfo is an HTTP service, you can contact it using the curl command. Use the -v option to understand which
of the nodes is being targeted.

You need to use the DNS server in order to resolve the hostname to the IP address of the service. To this end, create a
pod in one of the clusters (it does not matter which one) overriding its DNS configuration.

HOSTNAME="liqo.cloud.example.com"
K8GB_COREDNS_IP=$(kubectl get svc k8gb-coredns -n k8gb -o custom-columns='IP:spec.
→˓clusterIP' --no-headers)

kubectl run -it --rm curl --restart=Never --image=curlimages/curl:7.82.0 --command \
--overrides "{\"spec\":{\"dnsConfig\":{\"nameservers\":[\"${K8GB_COREDNS_IP}\"]},\

→˓"dnsPolicy\":\"None\"}}" \
-- curl $HOSTNAME -v

Note

Launching this pod several times, you will see different IPs and different frontend pods answering in a round-robin
fashion (as set in the Gslb policy).

* Trying 172.19.0.3:80...
* Connected to liqo.cloud.example.com (172.19.0.3) port 80 (#0)
...
{
"hostname": "podinfo-67f46d9b5f-xrbmg",
"version": "6.1.4",
"revision": "",

...

* Trying 172.19.0.6:80...
* Connected to liqo.cloud.example.com (172.19.0.6) port 80 (#0)
...
{
"hostname": "podinfo-67f46d9b5f-xrbmg",
"version": "6.1.4",
"revision": "",

...

* Trying 172.19.0.3:80...
* Connected to liqo.cloud.example.com (172.19.0.3) port 80 (#0)
...
{
"hostname": "podinfo-67f46d9b5f-cmnp5",
"version": "6.1.4",
"revision": "",

...

This brief tutorial showed how you could leverage Liqo and K8GB to deploy and expose a multi-cluster application.
In addition to the RoundRobin policy, which provides load distribution among clusters, K8GB allows favoring closer

76 Chapter 16. Global Ingress

Liqo

endpoints (through the GeoIP strategy), or adopt a Failover policy. Additional details are provided in its official docu-
mentation.

16.6 Tear down the playground

Our example is finished; now we can remove all the created resources and tear down the playground.

16.6.1 Unoffload namespaces

Before starting the uninstallation process, make sure that all namespaces are unoffloaded:

liqoctl unoffload namespace podinfo

Every pod that was offloaded to a remote cluster is going to be rescheduled onto the local cluster.

16.6.2 Revoke peerings

Similarly, make sure that all the peerings are revoked:

liqoctl unpeer out-of-band gslb-us

At the end of the process, the virtual node is removed from the local cluster.

16.6.3 Uninstall Liqo

Now you can remove Liqo from your clusters with liqoctl:

liqoctl uninstall
liqoctl uninstall --kubeconfig="$KUBECONFIG_US"

Purge

By default the Liqo CRDs will remain in the cluster, but they can be removed with the --purge flag:

liqoctl uninstall --purge
liqoctl uninstall --kubeconfig="$KUBECONFIG_US" --purge

16.6.4 Destroy clusters

To teardown the k3d clusters, you can issue:

k3d cluster delete gslb-eu gslb-us edgedns

16.6. Tear down the playground 77

https://www.k8gb.io/docs/strategy.html
https://www.k8gb.io/docs/strategy.html

Liqo

78 Chapter 16. Global Ingress

CHAPTER

SEVENTEEN

REPLICATED DEPLOYMENTS

In this tutorial you will learn how to deploy an application, and use Liqo to replicate it on multiple clusters.

In this example you will configure a scenario composed of a single entry point cluster used for the deployment of the
applications (called origin cluster) and two destination clusters. The deployed application will be replicated on all
destination clusters in order to deploy exactly one identical application on each destination cluster.

17.1 Provision the playground

First, make sure that the requirements for Liqo are satisfied.

Then, let’s open a terminal on your machine and launch the following script, which creates the three above-mentioned
clusters with KinD and installs Liqo on all of them.

git clone https://github.com/liqotech/liqo.git
cd liqo
git checkout master
cd examples/replicated-deployments
./setup.sh

Export the kubeconfigs environment variables to use them in the rest of the tutorial:

export KUBECONFIG=liqo_kubeconf_europe-cloud
export KUBECONFIG_EUROPE_ROME_EDGE=liqo_kubeconf_europe-rome-edge
export KUBECONFIG_EUROPE_MILAN_EDGE=liqo_kubeconf_europe-milan-edge

Note

We suggest exporting the kubeconfig of the origin cluster as default (i.e., KUBECONFIG), since you will mainly interact
with it.

Now you should have three clusters with Liqo running. The setup script named them europe-cloud, europe-rome-edge
and europe-milan-edge, and respectively configured the following cluster labels:

• origin: topology.liqo.io/type=origin

• europe-rome-edge: topology.liqo.io/type=destination

• europe-milan-edge: topology.liqo.io/type=destination

You can check that the clusters are correctly labeled through:

79

Liqo

liqoctl status
liqoctl status --kubeconfig "$KUBECONFIG_EUROPE_ROME_EDGE"
liqoctl status --kubeconfig "$KUBECONFIG_EUROPE_MILAN_EDGE"

17.2 Peer the clusters

Now, you can establish new Liqo peerings from origin to destination clusters, e.g., using the out-of-band peering
approach:

To implement the desired scenario, let’s first retrieve the peer command from the destination clusters:

PEER_EUROPE_ROME_EDGE=$(liqoctl generate peer-command --only-command --kubeconfig
→˓$KUBECONFIG_EUROPE_ROME_EDGE)
PEER_EUROPE_MILAN_EDGE=$(liqoctl generate peer-command --only-command --kubeconfig
→˓$KUBECONFIG_EUROPE_MILAN_EDGE)

Then, establish the peerings from the origin cluster:

echo "$PEER_EUROPE_ROME_EDGE" | bash
echo "$PEER_EUROPE_MILAN_EDGE" | bash

When the above commands return successfully, you can check the peering status by running:

kubectl get foreignclusters

The output should look like the following, indicating that an outgoing peering is currently active towards both the
europe-rome-edge and the europe-milan-edge clusters, and that the cross-cluster network tunnels have been established:

NAME TYPE OUTGOING PEERING INCOMING PEERING NETWORKING ␣
→˓AUTHENTICATION AGE
europe-rome-edge OutOfBand Established None Established ␣
→˓Established 41s
europe-milan-edge OutOfBand Established None Established ␣
→˓Established 7s

Additionally, you should have two new virtual nodes in the origin cluster, characterized by the labels set at install-time:

kubectl get node --selector=liqo.io/type=virtual-node --show-labels

NAME STATUS ROLES AGE VERSION LABELS
liqo-europe-milan-edge Ready agent 27s v1.25.0 liqo.io/remote-cluster-
→˓id=9636366f-2718-464e-b1df-3eca5a71aaf6,liqo.io/type=virtual-node,topology.liqo.io/
→˓type=destination
liqo-europe-rome-edge Ready agent 34s v1.25.0 liqo.io/remote-cluster-
→˓id=7a0f5f75-e98e-4927-b65f-d0274ca03d9c,liqo.io/type=virtual-node,topology.liqo.io/
→˓type=destination

Note

Some of the default labels were omitted for the sake of clarity.

80 Chapter 17. Replicated Deployments

Liqo

17.3 Tune namespace offloading

Now, let’s pretend you want to deploy an application that needs to be scheduled on all destination clusters, but not in
the origin one. First, we create a new namespace, then enable Liqo offloading to it:

kubectl create namespace liqo-demo

Then, enable Liqo offloading for that namespace:

liqoctl offload namespace liqo-demo \
--namespace-mapping-strategy EnforceSameName \
--pod-offloading-strategy Remote \
--selector 'topology.liqo.io/type=destination'

The above command configures Liqo with the following behaviour (see the dedicated usage page for additional infor-
mation concerning namespace offloading configurations):

• the liqo-demo namespace, and the contained resources, are offloaded only to the clusters with the topology.
liqo.io/type=destination label.

• the pods living in the liqo-demo namespace only on virtual nodes.

Selectors

This example uses selectors, but they are not strictly necessary here, as all peered clusters have been targeted as
destination. Selectors become necessary in case you want to target a subset of peered clusters. More information are
available in the offloading with policies example.

You can now query for the namespaces either in the europe-rome-edge or europe-milan-edge cluster to see if the remote
namespace has been correctly created by Liqo:

kubectl get namespaces liqo-demo --kubeconfig="$KUBECONFIG_EUROPE_ROME_EDGE"
kubectl get namespaces liqo-demo --kubeconfig="$KUBECONFIG_EUROPE_MILAN_EDGE"

If everything is correct, both commands should return an output similar to the following:

NAME STATUS AGE
liqo-demo Active 70s

17.4 Deploy applications

Now it is time to deploy the application.

In order to create a replica of the application in each destination cluster, you need to enforce the following conditions:

• The deployment resource must produce at least one pod for each destination cluster.

• Each destination cluster must schedule at most one pod on its nodes.

To obtain this result you can leverage the following features available in kubernetes:

• Set a number of replicas in the deployment which is equal to the number of destination clusters

• Set topologySpreadConstraints inside the deployment’s template, which sets the maxSkew equal to 1.

17.3. Tune namespace offloading 81

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/#spread-constraint-definition

Liqo

The file ./manifests/deploy.yaml contains an example of a deployment which satisfies these conditions. Let’s
deploy it:

kubectl apply -f ./manifests/deploy.yaml -n liqo-demo

More replicas

If the deployment uses a number of replicas which is higher than the number of virtual nodes, the pods will be scheduled
respecting the maxSkew value, which guarantees that the difference between the maximum number of pods (scheduled
on a single node) and the minimum will be 1.

We can check the pod status and verify that each destination cluster has scheduled one pod on its nodes, i.e., one pod
has been scheduled onto the europe-rome-edge cluster, and the other on europe-milan-edge, and they are both correctly
running:

kubectl get pod -n liqo-demo -o wide

NAME READY STATUS RESTARTS AGE IP NODE ␣
→˓ NOMINATED NODE READINESS GATES
liqo-demo-app-777fb9fc8-bbt4d 1/1 Running 0 7m28s 10.113.0.65 liqo-
→˓europe-rome-edge <none> <none>
liqo-demo-app-777fb9fc8-wrjph 1/1 Running 0 7m28s 10.109.0.62 liqo-
→˓europe-milan-edge <none> <none>

17.5 Tear down the playground

Our example is finished; now we can remove all the created resources and tear down the playground.

17.5.1 Unoffload namespaces

Before starting the uninstallation process, make sure that all namespaces are unoffloaded:

liqoctl unoffload namespace liqo-demo

17.5.2 Revoke peerings

Similarly, make sure that all the peerings are revoked:

liqoctl unpeer out-of-band europe-rome-edge
liqoctl unpeer out-of-band europe-milan-edge

At the end of the process, the virtual nodes are removed from the local cluster.

82 Chapter 17. Replicated Deployments

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/#spread-constraint-definition

Liqo

17.5.3 Uninstall Liqo

Now you can uninstall Liqo from your clusters:

liqoctl uninstall
liqoctl uninstall --kubeconfig="$KUBECONFIG_EUROPE_ROME_EDGE"
liqoctl uninstall --kubeconfig="$KUBECONFIG_EUROPE_MILAN_EDGE"

Purge

By default the Liqo CRDs will remain in the cluster, but they can be removed with the --purge flag.

17.5.4 Destroy clusters

To teardown the KinD clusters, you can issue:

kind delete cluster --name origin
kind delete cluster --name europe-rome-edge
kind delete cluster --name europe-milan-edge

17.5. Tear down the playground 83

Liqo

84 Chapter 17. Replicated Deployments

CHAPTER

EIGHTEEN

PROVISION WITH TERRAFORM

Terraform is a widely used Infrastructure as Code (IaC) tool that allows engineers to define their software infrastructure
in code.

This tutorial aims at presenting how to set up an environment with Liqo installed via Terraform.

You will learn how to create a virtual cluster by peering two Kubernetes clusters and offload a namespace using the
Generate, Peer and Offload resources provided by the Liqo provider.

18.1 Provision the infrastructure

First, check that you are compliant with the requirements. Additionally, this example requires Terraform to be installed
in your system.

Then, let’s open a terminal on your machine and launch the following script, which creates the infrastructure used in
this example (i.e., two KinD clusters, peered with Liqo), with all playground already set up.

This tutorial will present a detailed description about how this result is achieved, by analyzing the most notable parts
of the Terraform infrastructure definition file that refer to Liqo.

git clone https://github.com/liqotech/liqo.git
cd liqo
git checkout master
cd examples/provision-with-terraform
terraform init
terraform apply

18.2 Analyze the infrastructure and code

Inspecting Terraform main file within the examples/provision-with-terraform folder you can see the Terraform con-
figuration file analyzed below. With the previous command you created two KinD clusters, installed Liqo and es-
tablished an outgoing peering from local to remote cluster. Furthermore, you offloaded a namespace to virtual node
(i.e., remote cluster). In this way the namespace will leverage on both local and remote clusters resources following
offloading configuration.

This example is provisioned on KinD, since it requires no particular configurations (e.g., concerning accounts), and
does not lead to resource costs. Yet, all the presented functionalities work also on other clusters, e.g., the ones operated
by public cloud providers.

85

https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli

Liqo

18.2.1 Provision the clusters

The first step executed by Terraform is the creation of the two KinD clusters: the resource in charge of building them is
the kind_cluster resource of the provider tehcyx that, starting from configuration parameters (such as cluster_name,
service_subnet/pod_subnet), generates the clusters and related config files needed by other providers to set up the
infrastructure.

You can inspect the deployed clusters by typing on your workstation:

kind get clusters

You should see a couple of entries:

milan
rome

This means that two KinD clusters are deployed and running on your host.

Then, you can simply inspect the status of the clusters. To do so, you can export the KUBECONFIG variable to specify
the identity file for kubectl and liqoctl, and then contact the cluster.

By default, the kubeconfigs of the two clusters are stored in the current directory (./rome-config, ./milan-config).
You can export the appropriate environment variables leveraged for the rest of the tutorial (i.e., KUBECONFIG and
KUBECONFIG_MILAN), and referring to their location, through the following:

export KUBECONFIG="$PWD/rome-config"
export KUBECONFIG_MILAN="$PWD/milan-config"

Note

We suggest exporting the kubeconfig of the first cluster as default (i.e., KUBECONFIG), since it will be the entry point
of the virtual cluster and you will mainly interact with it.

18.2.2 Install Liqo

After creating the two KinD clusters, Terraform will install Liqo using the helm_release resource of the Helm
provider configured with the cluster config files. Once the installation is complete, you should see the Liqo system
pods up and running on both clusters:

kubectl get pods -n liqo

NAME READY STATUS RESTARTS AGE
liqo-auth-74c795d84c-x2p6h 1/1 Running 0 2m8s
liqo-controller-manager-6c688c777f-4lv9d 1/1 Running 0 2m8s
liqo-crd-replicator-6c64df5457-bq4tv 1/1 Running 0 2m8s
liqo-gateway-78cf7bb86b-pkdpt 1/1 Running 0 2m8s
liqo-metric-agent-5667b979c7-snmdg 1/1 Running 0 2m8s
liqo-network-manager-5b5cdcfcf7-scvd9 1/1 Running 0 2m8s
liqo-proxy-6674dd7bbd-kr2ls 1/1 Running 0 2m8s
liqo-route-7wsrx 1/1 Running 0 2m8s
liqo-route-sz75m 1/1 Running 0 2m8s

86 Chapter 18. Provision with Terraform

https://registry.terraform.io/providers/tehcyx/kind/latest/docs
https://registry.terraform.io/providers/hashicorp/helm/latest/docs
https://registry.terraform.io/providers/hashicorp/helm/latest/docs

Liqo

18.2.3 Extract the peering parameters

Once the Liqo installation in the remote cluster is complete, Terraform will extract the authentication parameters re-
quired to peer the local (i.e., Rome) cluster with the remote one (i.e., Milan).

This is achieved with the liqo_generate resource of the liqo provider instance, configured with either the config file
or the full list of parameters of the remote cluster:

provider "liqo" {
alias = "milan"
kubernetes = {
config_path = kind_cluster.milan.kubeconfig_path

}
}

resource "liqo_generate" "generate" {

depends_on = [
helm_release.install_liqo_milan

]

provider = liqo.milan

}

18.2.4 Run the peering procedure

Once the generate_resource is created, Terraform will continue with the out-of-band peering procedure leveraging
the output parameters of the previous resource.

This is achieved with the liqo_peer resource of the liqo provider instance, configured with either the config file or
the full list of parameters of the local cluster:

provider "liqo" {
alias = "rome"
kubernetes = {
config_path = kind_cluster.rome.kubeconfig_path

}
}

resource "liqo_peer" "peer" {

depends_on = [
helm_release.install_liqo_rome

]

provider = liqo.rome

cluster_id = liqo_generate.generate.cluster_id
cluster_name = liqo_generate.generate.cluster_name
cluster_authurl = liqo_generate.generate.auth_ep
cluster_token = liqo_generate.generate.local_token

}

18.2. Analyze the infrastructure and code 87

https://registry.terraform.io/providers/liqotech/liqo/latest/docs
https://registry.terraform.io/providers/liqotech/liqo/latest/docs

Liqo

You can check the peering status by running:

kubectl get foreignclusters

The output should look like the following, indicating that the cross-cluster network tunnel has been established, and an
outgoing peering is currently active (i.e., the Rome cluster can offload workloads to the Milan one, but not vice versa):

NAME TYPE OUTGOING PEERING INCOMING PEERING NETWORKING AUTHENTICATION ␣
→˓AGE
milan OutOfBand Established None Established Established ␣
→˓12s

At the same time, you should see a virtual node (liqo-milan) in addition to your physical nodes:

kubectl get nodes

NAME STATUS ROLES AGE VERSION
liqo-milan Ready agent 14s v1.25.0
rome-control-plane Ready control-plane,master 7m56s v1.25.0
rome-worker Ready <none> 7m25s v1.25.0

18.2.5 Offload a namespace

If you want to deploy an application that is scheduled on a Liqo virtual node (hence, it is offloaded on a remote cluster),
you should first create a namespace where your pod will be started.

This can be achieved with the kubernetes_namespace resource of the kubernetes provider, configured with either
the config file or the full list of parameters of the local cluster. Then tell Liqo to make this namespace eligible for the
pod offloading.

The resource in charge of doing this is liqo_offload of the same liqo provider instance of liqo_peer resource:

resource "liqo_offload" "offload" {

depends_on = [
helm_release.install_liqo_rome,
kubernetes_namespace.namespace

]

provider = liqo.rome

namespace = "liqo-demo"

}

Note

Liqo virtual nodes have a taint that prevents the pods from being scheduled on them. The Liqo webhook will add the
toleration for this taint to the pods created in the liqo-enabled namespaces.

Since no further configuration is provided, Liqo will add a suffix to the namespace name to make it unique on the remote
cluster (see the dedicated usage page for additional information concerning namespace offloading configurations).

88 Chapter 18. Provision with Terraform

https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs
https://registry.terraform.io/providers/liqotech/liqo/latest/docs
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Liqo

You can now test the infrastructure you have just created by deploying an application. For this, you can follow the
proper example section in the Quick Start page.

18.3 Tear down the infrastructure

To tear down all the infrastrucure you only need to run the following command:

terraform destroy

This command will destroy all the resources starting from the last one created, from bottom to top.

If you want to destroy a specific resource (for example to unpeer a cluster or to unoffload a namespace) you can leverage
on the -target flag of destroy command. For example, you can run the following command to unpeer two clusters:

terraform destroy -target="liqo_peer.peer"

Warning: The Terraform destroy command will destroy all resources that have a dependence on the one that
has to be destroyed.

18.3. Tear down the infrastructure 89

Liqo

90 Chapter 18. Provision with Terraform

CHAPTER

NINETEEN

PEER TWO CLUSTERS

This section describes the procedure to establish a peering with a remote cluster, using one of the two alternative
approaches featured by Liqo. You can refer to the dedicated features section for a high-level presentation of their
characteristics, and the associated trade-offs.

Warning: The establishment of a peering with a remote cluster leveraging a different version of Liqo, net of
patch releases, is currently not supported, and could lead to unexpected results.

19.1 Overview

The peering process leverages liqoctl to interact with the clusters, abstracting the creation and update of the appropriate
custom resources. To this end, the most important one is the ForeignCluster resource, which represents a remote
cluster, including its identity, the associated authentication endpoint, and the desired peering state (i.e., whether it
should be established, and in which directions). Additionally, its status reports a summary of the current peering
status, detailing whether the different phases (e.g., authentication, network establishment, resource negotiation, . . .)
correctly succeeded.

The following sections present the respective procedures to peer a local cluster A (i.e., the consumer), with a remote
cluster B (i.e., the provider). At the end of the process, a new virtual node is created in the consumer, abstracting the
resources shared by the provider, and enabling seamless pod offloading to the remote cluster. Additional details are
also provided to enable the reverse peering direction, hence achieving a bidirectional peering, allowing both clusters
to offload a part of their workloads to the other.

By default, Liqo shares a configurable percentage of the currently available resources of the provider cluster with
consumers. You can change this behavior by using a custom resource plugin.

All examples leverage two different contexts to refer to consumer and provider clusters, respectively named consumer
and provider.

Note

liqoctl displays a kubectl compatible behavior concerning Kubernetes API access, hence supporting the KUBECONFIG
environment variable, as well as all the standard flags, including --kubeconfig and --context. Ensure you selected
the correct target cluster before issuing liqoctl commands (as you would do with kubectl).

91

https://github.com/liqotech/liqo-resource-plugins

Liqo

19.2 Out-of-band control plane

Briefly, the procedure to establish an out-of-band control plane peering consists of a first step performed on the provider,
to retrieve the set of information required (i.e., authentication endpoint and token, cluster ID, . . .), followed by the
creation, on the consumer, of the necessary resources to start the actual peering. The remainder of the process,
including identity retrieval, resource negotiation and network tunnel establishment is performed automatically by
Liqo, through a mutual exchange of information and negotiation between the two clusters involved.

19.2.1 Information retrieval

To proceed, ensure that you are operating in the provider cluster, and then issue the liqoctl generate peer-command
command:

liqoctl --context=provider generate peer-command

This retrieves the information concerning the provider cluster (i.e., authentication endpoint and token, cluster ID, . . .)
and generates a command that can be executed on a different cluster (i.e., the consumer) to establish an out-of-band
outgoing peering towards the provider cluster.

An example of the resulting command is the following:

liqoctl peer out-of-band <cluster-name> --auth-url <auth-url> \
--cluster-id <cluster-id> --auth-token <auth-token>

19.2.2 Peering establishment

Once obtained the peering command, it is possible to execute it in the consumer cluster, to kick off the peering process.

Warning: Pay attention to operate in the correct cluster, possibly adding the appropriate flags to the generated
command (e.g., --context=consumer).

liqoctl --context=consumer peer out-of-band <cluster-name> --auth-url <auth-url> \
--cluster-id <cluster-id> --auth-token <auth-token>

The above command configures the appropriate authentication token, and then creates a new ForeignCluster resource
in the consumer cluster. Finally, it waits for the different peering phases to complete (this might require a few seconds,
depending on the download time of the Liqo virtual kubelet image).

The ForeignCluster resource can be inspected through kubectl:

kubectl --context=consumer get foreignclusters

If the peering process completed successfully, you should observe an output similar to the following, indicating that
the cross-cluster network tunnel has been established, and an outgoing peering is currently active (i.e., the consumer
cluster can offload workloads to the provider one, but not vice versa):

NAME TYPE OUTGOING PEERING INCOMING PEERING NETWORKING AUTHENTICATION
provider OutOfBand Established None Established Established

At the same time, a new virtual node should have been created in the consumer cluster. Specifically:

92 Chapter 19. Peer two Clusters

Liqo

kubectl --context=consumer get nodes -l liqo.io/type=virtual-node

Should return an output similar to the following:

NAME STATUS ROLES AGE VERSION
liqo-provider Ready agent 179m v1.23.4

In addition, you can check the peering status, and retrieve more advanced information, using:

liqoctl status peer provider

Note

The name of the ForeignCluster resource, as well as that of the virtual node, reflects the cluster name specified with
the liqoctl peer out-of-band command.

19.2.3 Bidirectional peering

Once the peering from the consumer to the provider has been established, the reverse direction (i.e., leading to a
bidirectional peering) can be enabled through a simpler command, since the ForeignCluster resource is already present:

liqoctl --context=provider peer consumer

19.2.4 Tear down

An out-of-band peering can be disabled leveraging the symmetric liqoctl unpeer command, causing the local virtual
node (abstracting the remote cluster) to be destroyed, and all offloaded workloads to be rescheduled:

liqoctl --context=consumer unpeer out-of-band

Note

The reverse peering direction, if any, is preserved, and the remote cluster can continue offloading workloads to its
virtual node representing the local cluster. In this case, the command emits a warning, and it does not proceed deleting
the ForeignCluster resource. Hence, the same command shall be executed on both clusters to completely tear down a
bidirectional peering.

In case only one peering direction shall be teared down, while preserving the opposite, it is suggested to leverage the
appropriate liqoctl unpeer command to disable the outgoing peering (e.g., on the provider cluster):

liqoctl --context=provider unpeer consumer

19.2. Out-of-band control plane 93

Liqo

19.3 In-band control plane

Briefly, the procedure to establish an in-band control plane peering consists of a first step performed by liqoctl, which
interacts alternatively with both clusters to establish the cross-cluster VPN tunnel, exchange the authentication to-
kens and configure the Liqo control plane traffic to flow inside the VPN. The remainder of the process, including identity
retrieval and resource negotiation, is performed automatically by Liqo, through a mutual exchange of information and
negotiation between the two clusters involved.

Note

The host used to issue the liqoctl peer in-band command must have concurrent access to both clusters (i.e., consumer
and provider) while carrying out the in-band control plane peering process. To this end, these subcommands feature
a parallel set of flags concerning Kubernetes API access to the remote cluster, in the form --remote-<flag> (e.g.,
--remote-kubeconfig, --remote-context).

19.3.1 Peering establishment

The in-band control plane peering process can be started leveraging a single liqoctl command:

liqoctl peer in-band --context=consumer --remote-context=provider

The above command outputs a set of information concerning the different operations performed on the two clusters.
Notably, it exchanges the appropriate authentication tokens, establishes the cross-cluster VPN tunnel, and then creates
a new ForeignCluster resource in both clusters. Finally, it waits for the different peering phases to complete (this might
require a few seconds, depending on the download time of the Liqo virtual kubelet image).

The ForeignCluster resource can be inspected through kubectl (e.g., on the consumer):

kubectl --context=consumer get foreignclusters

If the peering process completed successfully, you should observe an output similar to the following, indicating that
the cross-cluster network tunnel has been established, and an outgoing peering is currently active (i.e., the consumer
cluster can offload workloads to the provider one, but not vice versa):

NAME TYPE OUTGOING PEERING INCOMING PEERING NETWORKING AUTHENTICATION
provider InBand Established None Established Established

At the same time, a new virtual node should have been created in the consumer cluster. Specifically:

kubectl --context=consumer get nodes -l liqo.io/type=virtual-node

Should return an output similar to the following:

NAME STATUS ROLES AGE VERSION
liqo-provider Ready agent 179m v1.23.4

In addition, you can check the peering status, and retrieve more advanced information, using:

liqoctl status peer provider

Note

94 Chapter 19. Peer two Clusters

Liqo

The name of the ForeignCluster resource, as well as that of the virtual node, reflects the cluster name specified by the
remote cluster administrators at install time.

19.3.2 Bidirectional peering

A bidirectional in-band peering can be established adding the --bidirectional flag to the liqoctl peer command
invocation:

liqoctl peer in-band --context=consumer --remote-context=provider --bidirectional

Note

The liqoctl peer in-band command is idempotent, and can be re-executed without side effects to enable a bidirectional
peering.

Alternatively, the reverse peering can be also activated executing the following on the provider cluster:

liqoctl --context=provider peer consumer

19.3.3 Tear down

An in-band peering can be disabled leveraging the symmetric liqoctl unpeer command, causing both virtual nodes (if
present) to be destroyed, all offloaded workloads to be rescheduled, and finally tearing down the cross-cluster VPN
tunnel:

liqoctl unpeer in-band --context=consumer --remote-context=provider

In case only one peering direction shall be teared down, while preserving the opposite, it is possible to leverage the
appropriate liqoctl unpeer command to disable the outgoing peering (e.g., on the provider cluster):

liqoctl --context=provider unpeer consumer

19.3. In-band control plane 95

Liqo

96 Chapter 19. Peer two Clusters

CHAPTER

TWENTY

NAMESPACE OFFLOADING

This section presents the operational procedure to offload a namespace to (possibly a subset of) the remote clusters
peered with the local cluster. Hence, enabling pod offloading, as well as triggering the resource reflection process:
additional details about namespace extension in Liqo are provided in the dedicated namespace extension features sec-
tion.

20.1 Overview

The offloading of a namespace can be easily controlled through the dedicated liqoctl commands, which abstract the
creation and update of the appropriate custom resources. In this context, the most important one is the Namespace-
Offloading resource, which enables the offloading of the corresponding namespace, configuring at the same time the
subset of target remote clusters, additional constraints concerning pod offloading and the naming strategy. Moreover,
different namespaces can be characterized by different configurations, hence achieving a high degree of flexibility. Fi-
nally, the NamespaceOffloading status reports for each remote cluster a summary about its status (i.e., whether the
remote cluster has been selected for offloading, and the twin namespace has been correctly created).

20.2 Offloading a namespace

A given namespace foo can be offloaded, leveraging the default configuration, through:

liqoctl offload namespace foo

Alternatively, the underlying NamespaceOffloading resource can be generated and output (either in yaml or json format)
leveraging the dedicated --output flag:

liqoctl offload namespace foo --output yaml

Then, the resulting manifest can be applied with kubectl, or through automation tools (e.g., by means of GitOps ap-
proaches).

Note

Possible race conditions might occur in case a NamespaceOffloading resource is created at the same time (e.g., as a
batch) as pods (or higher level abstractions such as Deployments), preventing them from being considered for offloading
until the NamespaceOffloading resource is not processed.

This situation can be prevented manually labeling in advance the hosting namespace with the liqo.io/scheduling-
enabled=true label, hence enabling the Liqo mutating webhook and causing pod creations to be rejected until pod

97

Liqo

offloading is possible. Still, this causes no problems, as the Kubernetes abstractions (e.g., Deployments) ensure that
the desired pods get eventually created correctly.

Regardless of the approach adopted, namespace offloading can be further configured in terms of the three main param-
eters presented below, each one exposed through a dedicated CLI flag.

20.2.1 Namespace mapping strategy

The namespace mapping strategy defines the naming strategy used to create the remote namespaces, and can be con-
figured through the --namespace-mapping-strategy flag. The accepted values are:

• DefaultName (default): to prevent conflicts on the target cluster, remote namespace names are generated as the
concatenation of the local namespace name, the cluster name of the local cluster and a unique identifier (e.g., foo
could be mapped to foo-lively-voice-dd8531).

• EnforceSameName: remote namespaces are named after the local cluster’s namespace. This approach ensures
naming transparency, which is required by certain applications, as well as guarantees that cross-namespace
DNS queries referring to reflected services work out of the box (i.e., without adapting the target namespace
name). Yet, it can lead to conflicts in case a namespace with the same name already exists inside the selected
remote clusters, ultimately causing the remote namespace creation request to be rejected.

Note

Once configured for a given namespace, the namespace mapping strategy is immutable, and any modification is pre-
vented by a dedicated Liqo webhook. In case a different strategy is desired, it is necessary to first unoffload the names-
pace, and then re-offload it with the new parameters.

20.2.2 Pod offloading strategy

The pod offloading strategy defines high-level constraints about pod scheduling, and can be configured through the
--pod-offloading-strategy flag. The accepted values are:

• LocalAndRemote (default): pods deployed in the local namespace can be scheduled both onto local nodes and
onto virtual nodes, hence possibly offloaded to remote clusters.

• Local: pods deployed in the local namespace are enforced to be scheduled onto local nodes only, hence never
offloaded to remote clusters. The extension of a namespace, forcing at the same time all pods to be scheduled
locally, enables the consumption of local services from the remote cluster, as shown in the service offloading
example.

• Remote: pods deployed in the local namespace are enforced to be scheduled onto remote nodes only, hence
always offloaded to remote clusters.

Note

The pod offloading strategy applies to pods only, while the other objects that live in namespaces selected for offloading,
and managed by the resource refletion process, are always replicated to (possibly a subset of) the remote clusters, as
specified through the cluster selector (more details below).

98 Chapter 20. Namespace Offloading

Liqo

Warning: Due to current limitations of Liqo, the pods violating the pod offloading strategy are not automatically
evicted following an update of this policy to a more restrictive value (e.g., LocalAndRemote to Remote) after the
initial creation.

20.2.3 Cluster selector

The cluster selector provides the possibility to restrict the set of remote clusters (in case more than one peering is
active) selected as targets for offloading the given namespace. The twin namespace is not created in clusters that do
not match the cluster selector, as well as the resource reflection mechanism is not activated for those namespaces. Yet,
different cluster selectors can be specified for different namespaces, depending on the desired configuration.

The cluster selector follows the standard label selector syntax, and refers to the Kubernetes labels characterizing the
virtual nodes. Specifically, these include both the set of labels suggested by the remote cluster during the peering
process and automatically propagated by Liqo, as well as possible additional ones added by the local cluster adminis-
trators.

The cluster selector can be expressed through the --selector flag, which can be optionally repeated multiple times
to specify alternative requirements (i.e., in logical OR). For instance:

• --selector 'region in (europe,us-west), !staging' would match all clusters located in the europe
or us-west region, AND not including the staging label.

• --selector 'region in (europe,us-west)' --selector '!staging' would match all clusters lo-
cated in the europe or us-west region, OR not including the staging label.

In case no cluster selector is specified, all remote clusters are selected as targets for namespace offloading. In other
words, an empty cluster selector matches all virtual clusters.

20.3 Unoffloading a namespace

The offloading of a namespace can be disabled through the dedicated liqoctl command, causing in turn the deletion of
all resources reflected to remote clusters (including the namespaces themselves), and triggering the rescheduling of all
offloaded pods locally:

liqoctl unoffload namespace foo

Warning: Disabling the offloading of a namespace is a destructive operation, since all resources created in
remote namespaces (either automatically or manually) get removed, including possible persistent storage volumes.
Before proceeding, double-check that the correct namespace has been selected, and ensure no important data is still
present.

20.3. Unoffloading a namespace 99

Liqo

100 Chapter 20. Namespace Offloading

CHAPTER

TWENTYONE

RESOURCE REFLECTION

This section characterizes the resource reflection process (including also pod offloading), detailing how the different
resources are propagated to remote clusters and which fields are mutated.

Briefly, the set of supported resources includes (by category):

• Workload: Pods

• Exposition: Services, EndpointSlices, Ingresses

• Storage: PersistentVolumeClaims, PresistentVolumes

• Configuration: ConfigMaps, Secrets

Note

The reflection of a given object belonging to the Exposition or Configuration categories, and living in a namespace
enabled for offloading, can be manually disabled adding the liqo.io/skip-reflection annotation to the object
itself.

Additionally, the reflection of a given type of resources (e.g., Secrets) towards remote clusters can be completely dis-
abled setting the corresponding --<resource>-reflection-workers=0 virtual kubelet flag at install time:

liqoctl install ... --set "virtualKubelet.extra.args={--secret-reflection-workers=0}"

21.1 Pods offloading

Liqo leverages a custom resource, named ShadowPod, combined with an appropriate enforcement logic to ensure
remote pod resiliency even in case of temporary connectivity loss between the local and remote clusters.

Pod specifications are propagated to the remote cluster verbatim, except for the following fields that are mutated:

• Removal of scheduling constraints (e.g., Affinity, NodeSelector, SchedulerName, Preemption, . . .), as referring
to the local cluster.

• Mutation of service account related information, to allow offloaded pods to transparently interact with the local
(i.e., origin) API server, instead of the remote one.

• Enforcement of the properties concerning the usage of host namespaces (e.g., network, IPC, PID) to false (i.e.,
disabled), as potentially invasive and troublesome.

Note

101

Liqo

Anti-affinity presets can be leveraged to specify predefined scheduling constraints for offloaded pods, spreading them
across different nodes in the remote cluster. This feature is enabled through the liqo.io/anti-affinity-preset
pod annotation, which can take three values:

• propagate: the anti-affinity constraints of the pod are propagated verbatim when offloaded to the remote cluster.
Make sure that they match both the virtual node in the local cluster and at least one physical node in the remote
cluster, otherwise the pod will fail to be scheduled (i.e., remain in pending status).

• soft: the pods sharing the same labels are preferred to be scheduled on different nodes (i.e., it is translated into
a preferredDuringSchedulingIgnoredDuringExecution anti-affinity constraint).

• hard: the pods sharing the same labels are required to be scheduled on different nodes (i.e., it is translated into
a requiredDuringSchedulingIgnoredDuringExecution anti-affinity constraint).

When set to soft or hard, the liqo.io/anti-affinity-labels annotation allows to select a subset of the pod label
keys to build the anti-affinity constraints:

annotations:
liqo.io/anti-affinity-preset: soft
liqo.io/anti-affinity-labels: app.kubernetes.io/name,app.kubernetes.io/instance

Given that affinity constraints are immutable, the addition/removal of the annotations to/from an already existing pod
does not have any effect. Make sure that the annotations are configured appropriately in the template of the managing
object (e.g., Deployment, or StatefulSet).

Differently, pod status is propagated from the remote cluster to the local one, performing the following modifications:

• The PodIP is remapped according to the network fabric configuration, such as to be reachable from the other
pods running in the same cluster.

• The NodeIP is replaced with the one of the corresponding virtual kubelet pod.

• The number of container restarts is augmented to account for the possible deletions of the remote pod (whose
presence is enforced by the controlling ShadowPod resource).

Note

A pod living in a namespace not enabled for offloading, but manually forced to be scheduled in a virtual node, remains
in Pending status, and it is signaled with the OffloadingBackOff reason. For instance, this can happen for system
DaemonSets (e.g., CNI plugins), which tolerate all taints (hence, including the one associated with virtual nodes) and
thus get scheduled on all nodes.

To prevent this behavior, it is necessary to explicitly modify the involved DaemonSets, adding a suitable affinity con-
straint excluding virtual nodes:

affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: liqo.io/type
operator: NotIn
values:
- virtual-node

102 Chapter 21. Resource Reflection

Liqo

21.2 Service exposition

The reflection of Service and EndpointSlice resources is a key element to allow the seamless intercommunication
between microservices spread across multiple clusters, enabling the usage of standard DNS discovery mechanisms.
In addition, the propagation of Ingresses enables the definition of multiple points of entrance for the external traffic,
especially when combined with additional tools such as K8GB (see the global ingress example for additional details).

21.2.1 Services

Services are reflected verbatim into remote clusters, except for what concerns the ClusterIP, LoadBalancerIP and
NodePort fields (when applicable), which are left empty (hence defaulted by the remote cluster), as likely conflicting.
Still, the usage of standard DNS discovery mechanisms (i.e., based on service name/namespace) abstracts away the
ClusterIP differences, with each pod retrieving the correct IP address.

Note

In case node port correspondence across clusters is required, its propagation can be enforced adding the liqo.io/
force-remote-node-port=true annotation to the involved service.

21.2.2 EndpointSlices

In the local cluster, Services are transparently handled by the vanilla Kubernetes control plane, since it has full vis-
ibility of all pods (even those offloaded), hence leading to the creation of the corresponding EndpointSlice entries.
Differently, the control plane of each remote cluster perceives only the pods running in that cluster, and the standard
EndpointSlice creation logic alone is not sufficient (as it would not include the pods hosted by other clusters).

This gap is filled by the Liqo EndpointSlice reflection logic, which takes care of propagating all EndpointSlice entries
(i.e. endpoints) not already present in the destination cluster. During the propagation process, endpoint addresses are
appropriately remapped according to the network fabric configuration, ensuring that the resulting IPs are reachable
from the destination cluster.

Thanks to this approach, multiple replicas of the same microservice spread across different clusters, and backed by
the same service, are handled transparently. Each pod, no matter where it is located, contributes with a distinct End-
pointSlice entry, either by the standard control plane or through resource reflection, hence becoming eligible during
the Service load-balancing process.

Note

Even in a scenario where a single cluster is peered with multiple remote ones, the EndpointSlice reflection logic
ensures that a pod scheduled remotely is reachable from every cluster through its service.

21.2. Service exposition 103

https://www.k8gb.io/

Liqo

21.2.3 Ingresses

The propagation of Ingress resources enables the configuration of multiple points of entrance for external traffic.
Ingress resources are propagated verbatim into remote clusters, except for the IngressClassName field, which is left
empty. Hence, selecting the default ingress class in the remote cluster, as the local one (i.e., the one in the origin cluster)
might not be present.

21.3 Persistent storage

The reflection of PersistentVolumeClaims (PVCs) and PersistentVolumes (PVs) is a key to enable the cross-cluster
Liqo storage fabric. Specifically, the process is triggered when a PVC requiring the Liqo storage class is bound for
the first time, and the requesting pod is scheduled in a virtual node (i.e., remote cluster). Upon this event, the PVC is
propagated verbatim to the remote cluster, replacing the requested StorageClass with the one negotiated during the
peering process.

Once created, the resulting PV is reflected backwards (i.e., from the remote to the local cluster), and the proper affinity
selectors are added to bind it to the virtual node. Hence, subsequent pods mounting that PV will be scheduled on
that virtual node, and eventually offloaded to the same remote cluster.

21.4 Configuration data

ConfigMaps and Secrets typically hold configuration data consumed by pods, and both types of resources are prop-
agated by Liqo verbatim into remote clusters. In this respect, Liqo features also the propagation of ServiceAccount
tokens, to enable offloaded pods to contact the Kubernetes API server of the origin cluster, as well as to support those
applications leveraging ServiceAccounts for internal authentication purposes.

Warning: ServiceAccount tokens are stored within Secret objects when propagated to the remote cluster. This
implies that any entity authorized to access Secret objects (or the mounting pods) might retrieve the tokens and
impersonate the offloaded workloads. Hence, gaining the possibility to interact with the Kubernetes API server
of the origin cluster, with the same permissions granted to the corresponding service account.

If this is a security concern in your scenario (e.g., the clusters are under the control of different administrative
domains), it is possible to disable this feature setting the --enable-apiserver-support=false virtual kubelet
flag at install time:

liqoctl install ... --set "virtualKubelet.extra.args={--enable-apiserver-
→˓support=false}"

104 Chapter 21. Resource Reflection

CHAPTER

TWENTYTWO

STATEFUL APPLICATIONS

As introduced in the storage fabric features section, Liqo supports multi-cluster stateful applications by extending
the classical approaches adopted in standard Kubernetes clusters.

22.1 Liqo virtual storage class

The Liqo virtual storage class is a Storage Class that embeds the logic to create the appropriate PersistentVolumes,
depending on the target cluster the mounting pod is scheduled onto. All operations performed on virtual objects (i.e.,
PersistentVolumeClaims (PVCs) and PersistentVolumes (PVs) associated with the liqo storage class) are then automat-
ically propagated by Liqo to the corresponding real ones (i.e., associated with the storage class available in the target
cluster).

Additionally, once a real PV gets created, the corresponding virtual one is enriched with a set of policies to attract
mounting pods in the appropriate cluster, following the data gravity approach.

The figure below shows an application pod consuming a virtual PVC, which in turn led to the creation of the associated
virtual PV. This process is completely transparent from the management point of view, with the only difference being
the name of the storage class.

Warning: The deletion of the virtual PVC will cause the deletion of the real PVC/PV, and the stored data will be
permanently lost.

The Liqo control plane handles the binding of virtual PVC resources (i.e., associated with the liqo storage class) dif-
ferently depending on the cluster where the mounting pod gets eventually scheduled onto, as detailed in the following.

22.1.1 Local cluster binding

In case a virtual PVC is bound to a pod initially scheduled onto the local cluster (i.e., a physical node), the Liqo control
plane takes care of creating a twin PVC (in turn originating the corresponding twin PV) in the liqo-storage namespace,
while mutating the storage class to that configured at Liqo installation time (with a fallback to the default one). A
virtual PV is eventually created by Liqo to mirror the real one, effectively allowing pods to mount it and enforcing the
data gravity constraints.

The resulting configuration is depicted in the figure below.

Current Limitations

105

https://kubernetes.io/docs/concepts/storage/storage-classes/

Liqo

Currently, the virtual storage class does not support the configuration of Kubernetes mount options and parameters.

22.1.2 Remote cluster binding

In case a virtual PVC is bound to a pod initially scheduled onto a remote cluster (i.e., a virtual node), the Liqo control
plane takes care of creating a twin PVC (in turn originating the corresponding twin PV) in the offloaded namespace,
while mutating the storage class to that negotiated at peering time (i.e., configured at Liqo installation time in the
remote cluster, with a fallback to the default one). A virtual PV is eventually created by Liqo to mirror the real one,
effectively allowing pods to mount it and enforcing the data gravity constraints.

The resulting configuration is depicted in the figure below.

Warning: The tearing down of the peering and/or the deletion of the offloaded namespace will cause the deletion
of the real PVC, and the stored data will be permanently lost.

22.1.3 Move PVCs across clusters

Once a PVC is created in a given cluster, subsequent pods mounting that volume will be forced to be scheduled onto
the same cluster to achieve storage locality, following the data gravity approach.

Still, if necessary, you can manually move the storage backing a virtual PVC (i.e., associated with the liqo storage
class) from a cluster to another, leveraging the appropriate liqoctl command. Then, subsequent pods will get scheduled
in the cluster the storage has been moved to.

Warning: This procedure requires the PVC/PV not to be bound to any pods during the entire process. In other
words, live migration is currently not supported.

A given PVC can be moved to a target node (either physical, i.e., local, or virtual, i.e., remote) through the following
command:

liqoctl move volume $PVC_NAME --namespace $NAMESPACE_NAME --target-node $TARGET_NODE_NAME

Where:

• $PVC_NAME is the name of the PVC to be moved.

• $NAMESPACE_NAME is the name of the namespace where the PVC lives in.

• $TARGET_NODE_NAME is the name of the node where the PVC will be moved to.

Under the hood, the migration process leverages the Liqo cross-cluster network fabric and the Restic project to back
up the original data in a temporary repository, and then restore it in a brand-new PVC forced to be created in the target
cluster.

Warning: Liqo and liqoctl are not backup tools. Make sure to properly back up important data before starting
the migration process.

106 Chapter 22. Stateful Applications

https://kubernetes.io/docs/concepts/storage/storage-classes/#mount-options
https://restic.net/

Liqo

22.2 Externally managed storage

In addition to the virtual storage class, Liqo supports the offloading of pods that bind to cross-cluster storage managed
by external solutions (e.g., managed by the cloud provider, or manually provisioned). Specifically, the volumes stanza
of the pod specification is propagated verbatim to the offloaded pods, hence allowing to specify volumes available only
remotely.

Note

In case a piece of externally managed storage is available only in one remote cluster, it is likely necessary to manually
force pods to get scheduled exactly in that cluster. To prevent scheduling issues (e.g., the pod is marked as Pending
since the local cluster has no visibility on the remote PVC), it is suggested to configure the target NodeName in the pod
specifications to match that of the corresponding virtual nodes, hence bypassing the standard Kubernetes scheduling
logic.

Warning: Due to current Liqo limitations, the remote namespace, including any PVC therein contained, will be
deleted in case the local namespace is unoffloaded/deleted, or the peering is torn down.

22.2. Externally managed storage 107

Liqo

108 Chapter 22. Stateful Applications

CHAPTER

TWENTYTHREE

PROMETHEUS METRICS

This section presents the metrics exposed by Liqo, using the Prometheus format. Although in this page we suppose
Prometheus is running in your cluster, please note that this is not strictly required: metrics can be scraped also by an
external Prometheus server, with Liqo metrics exposed through a dedicated endpoint.

23.1 Scraping metrics

Gathering of Liqo metrics is disabled by default. To enable the scraping of Liqo metrics, you should set the
--enable-metrics liqoctl flag during installation (cf. installation customization options). In this case, Liqo assumes
that you leverage the Prometheus Operator to run Prometheus, hence it creates also the proper ServiceMonitor and
PodMonitor resources that are automatically associated to the components that export metrics (e.g., network gateway,
virtual kubelet). Finally, metrics are scraped depending on how your Prometheus server(s) has been configured.

If you need to finely tune the above settings, you should use Helm. For example, this can be useful if your Prometheus
server is external to your cluster, hence you want simply to export the Liqo metrics to a public endpoint and scrape
them from there. Refer to the Install with Helm section for further details.

23.2 Cross-cluster network metrics

These metrics are available for each peered remote cluster, providing statistics about the cross-cluster network inter-
connections:

• liqo_peer_receive_bytes_total: the total number of bytes received from a remote cluster.

• liqo_peer_transmit_bytes_total: the total number of bytes transmitted to a remote cluster.

• liqo_peer_latency_us: the round-trip (RTT) latency between the local cluster and a remote cluster, in micro
seconds, measured by a periodic UDP ping between the two Liqo gateways and sent within the Liqo tunnel
itself.

• liqo_peer_is_connected: boolean keeping the status of the network interconnection between clusters, i.e.,
whether the peering is established and works properly, derived from the ping measurement above.

109

https://prometheus.io/
https://github.com/prometheus-operator/prometheus-operator

Liqo

23.2.1 Grafana dashboard

We provide a sample Grafana dashboard to monitor the network interconnection of an arbitrary number of Liqo
peerings. As presented in the screenshot below, it includes an overview section presenting the overall cross-cluster
throughput, followed by detailed per-peering throughput and latency information.

23.3 Virtual kubelet metrics

These metrics are available for each peered remote cluster, providing statistics about the reflected resources:

• liqo_virtual_kubelet_reflection_item_counter: the number of resources that are currently successfully re-
flected (e.g., Pod, ConfigMap, Secret, Service, ServiceAccount, EndpointSlice, Ingress and PersistentVolume-
Claim). This number can increase/decrease over time, and it may reach zero when two peered clusters have no
reflected resources.

• liqo_virtual_kubelet_reflection_error_counter: the number of transient errors during the reflection phase.
Errors can occur due to temporary race conditions that can be resolved by retrying the synchronization. These
conditions mainly occur when some of the requested resources are not yet fully configured (e.g., no reflector
is found for the given namespace and no fallback is configured, the fallback is not completely initialized this
happens if namespace reflectors still need to be started, and the reflector is not completely initialized because
only one of the two informer factories has synced).

110 Chapter 23. Prometheus Metrics

Liqo

23.3.1 Grafana dashboard

We offer a sample Grafana dashboard that allows you to monitor the reflected resources for each component of the
virtual-kubelet. As shown in the screenshot below, it contains visual representations of the total number of reflected
resources and the average rate per second. Additionally, there are detailed tables that provide information on the total
number of each type of resource, as well as an overall summary of all reflected items during a certain time period.

23.3. Virtual kubelet metrics 111

Liqo

112 Chapter 23. Prometheus Metrics

CHAPTER

TWENTYFOUR

EXTERNAL NETWORK

Since Liqo v0.8.0, it is possible to enable resource reflection and namespace offloading without the need to establish
network connectivity between the clusters. This feature is called External Network. In this section, we will see how
to enable/disable this feature and how to use it.

24.1 Overview

The External Network feature allows resource reflection and namespaces offloading without requiring network connec-
tivity between clusters.

This feature is useful in scenarios where the offloaded application does not need to perform cross-cluster com-
munication but only needs to access local resources. For example, a batch processing application does not need to
communicate with other clusters, but it needs to access a database external to the cluster. In this case, a network in-
terconnection between clusters is not required and may lead to unnecessary security issues and interdependencies
between clusters.

Another use case is when the clusters and the pods running on them are already connected to the same network.
In this case, you may leverage the External Network feature to enable resource reflection and namespaces offloading
without having to establish another network connection between the clusters.

24.2 Enable/Disable the External Network

This feature is disabled by default, and can be configured with two different feature flags at install time (see the
reference):

• --set networking.internal=false to disable the internal network

• --set networking.reflectIPs=false to disable the reflection of the IP addresses

24.2.1 networking.internal=false

This flag disables the internal network. When this flag is set to false, the Liqo Gateway and the Liqo Route are not
deployed on the cluster and the Liqo Network Manager is not started. The Liqo Network Manager is responsible for
creating the tunnel-endpoint resource, which is used to establish the network connectivity between the clusters.

When the internal network is disabled, the Liqo Network Fabric is not enabled and no parameter negotiation or IP
remapping is performed. The IP addresses of the remote pods are reflected as they are.

Note

113

Liqo

The pod IPs are still reflected in the remote clusters, but they are not remapped. This means that the shadow pods will
see the same IP in each cluster. It similarly happens with EndpointSlices resources. If you have an external network
tool that handles the connection, you will be able to connect to the remote pods.

24.2.2 networking.reflectIPs=false

This flag disables the reflection of the IP addresses. When this flag is set to false, the IP addresses of the remote
pods are not reflected and both local and remote EndpointSlices resources are not populated.

All shadow pods will have an empty IP address, and will not be selected as targets by any Kubernetes service.

114 Chapter 24. External Network

CHAPTER

TWENTYFIVE

SERVICE CONTINUITY

This section provides additional details regarding service continuity in Liqo. It reports the main architectural design
choices and the options to better handle eventual losses of components of the multi-cluster (e.g., control plane, nodes,
network, liqo pods, etc.).

For simplicity, we consider a simple consumer-provider setup, where the consumer/local cluster offloads an applica-
tion to a provider/remote cluster. Since a single peering is unidirectional and between two clusters, all the following
considerations can be extended to more complex setups involving bidirectional peerings and/or multiple clusters.

25.1 Resilience to cluster failures/unavailability

Liqo performs periodic checks to ensure the availability and readiness of all peered clusters. In particular, for every
peered cluster, it checks for:

• readiness of the foreign cluster’s API server

• availability of the VPN tunnel for cross-cluster connectivity (liqo-gateway)

The ForeignCluster CR contains the status conditions indicating the current status of the above checks (named respec-
tively APIServerStatus and NetworkStatus). A peered cluster is considered ready/healthy if all the above checks are
successful.

25.1.1 Remote cluster failure

In this scenario the remote cluster is unavailable/unhealthy. Following the standard K8s protocol, the virtual node is
marked as NotReady after node-monitor-grace-period seconds (default: 40s). This allows the control plane of
the local cluster (which has visibility on all pods in a Liqo-enabled namespace, i.e. both local and remote pods) to
mark all endpointslices associated to remote pods as not ready, preventing services to redirect traffic towards them in
the same way services will not backend standards Kubernetes nodes. Also, new pods are scheduled on the remaining
local nodes. As the virtual node transparently implements the standard Kubernetes interface, service continuity in the
local cluster is guaranteed by Kubernetes in the event of unavailability of the remote cluster. Look at the official guide
for further details.

115

https://kubernetes.io/docs/concepts/services-networking/endpoint-slices/#conditions

Liqo

25.1.2 Local cluster failure

In this scenario the local cluster is unavailable/unhealthy. Since the virtual node is not present on the remote cluster,
Liqo logic ensures service continuity.

Remote pod resiliency

Remote pod resiliency (hence, service continuity) is ensured, even in case of temporary connectivity loss between
the two control planes, through a custom resource (i.e., ShadowPod) wrapping the pod definition, and triggering a
Liqo enforcement logic running in the remote cluster. This guarantees that the desired pod is always present, without
requiring the intervention of the originating cluster. The virtual kubelet takes care of the automatic propagation of
remote status changes to the corresponding local pod (remapping the appropriate information).

Fig. 1: Schematic representation of the pod offloading workflow. Solid lines refer to liqo-related tasks, while dashed
ones to standard Kubernetes logic. Double circles indicate the pod in execution (i.e., whose containers are running).
Blue rectangles refers to liqo-related resources.

Remote endpointslices

The endpointslices of all local pods must be disabled to prevent services to redirect traffic towards pods running on the
local cluster to ensure service continuity on the remote cluster when the local cluster has a failure. Note that since the
control plane of each remote cluster perceives only the pods running in its cluster, the Liqo EndpointSlice reflection
fills the gaps by creating the necessary endpointslices associated with local pods (as explained here).

Liqo provides a more robust mechanism that offers better resiliency to cluster failures since version v0.8.2. It introduces
an intermediate resource, the ShadowEndpointSlice CR, similar to the one adopted for the pods (i.e., ShadowPod).
In this case, it is an abstraction that serves as a template for the desired configuration of the remote endpointslice. The
virtual kubelet forges the remote shadow resource of a reflected endpointslice and creates it on the remote cluster. A
controller in Liqo runs in the remote cluster and enforces the presence of the actual endpointslice, using the shadow
resource as a source of truth. At the same time, it periodically checks the local cluster status (monitoring the above-
described conditions) and dynamically updates the Ready condition of the endpoints in the endpointslices, depending
on the cluster status. More specifically, endpoints are set ready only if both the VPN tunnel and the API server of
the foreign cluster are ready. Note that a remote endpoint is updated only when the local endpointslice (and therefore
the shadowendpointslice) has the Ready condition set to True or unspecified. If it is set to False, the remote endpoint
condition is set to False regardless of the current status of the foreign cluster to preserve the local cluster’s desired
behavior.

Fig. 2: Schematic representation of the endpointslice reflection workflow. Solid lines refer to liqo-related tasks, while
dashed ones to standard Kubernetes logic. Blue rectangles refer to liqo-related resources.

In summary, Liqo ensures that when a peered cluster is unavailable the endpoints of the local pods are temporarily
disabled, and re-enabled when the cluster becomes ready again (if not explicitly disabled by the originating cluster).

116 Chapter 25. Service Continuity

Liqo

25.2 Resilience to worker nodes failures

This section describes scenarios where one or more worker nodes are unavailable/unhealthy, with all control planes
ready and the cross-cluster network up and running.

25.2.1 Worker node failure on the local cluster

Pods running on the local cluster are scheduled on regular worker nodes and therefore their entire lifecycle is handled
by Kubernetes as explained in the official guide.

25.2.2 Worker node failure on the remote cluster

Offloaded pods are scheduled on the virtual node in the local cluster and run on regular worker nodes in the remote
cluster. As explained in the pod offloading section the ShadowPod abstraction guarantees remote pod resiliency (hence,
service continuity) in case of unavailability of the local cluster, enforcing the presence of the desired pod (scheduled
on a regular worker node) without requiring the intervention of the originating cluster.

If a remote worker node becomes NotReady the Kubernetes control plane marks all pods scheduled on that node for
deletion, leaving them in a Terminating state indefinitely (until the node becomes ready again or a manual eviction is
performed). Due to design choices in Liqo, a pod that is (1) offloaded, (2) Terminating, (3) running on a failed node
is not replaced by a new one on a healthy worker node (like in vanilla Kubernetes). The consequence is that in case
of remote worker node failure, the expected workload (i.e., the number of replicas actively running) of a deployment
could be less than expected.

Since Liqo v0.7.0, it is possible to overcome this issue. You can configure Liqo to make sure the ex-
pected workload is always running on the remote cluster, setting the Helm value controllerManager.config.
enableNodeFailureController=true at install/upgrade time. This flag enables a custom Liqo controller that
checks for all offloaded and Terminating pods running on NotReady nodes. A pod matching all conditions is force-
deleted by the controller. This way, the ShadowPod controller will enforce the presence of the remote pod by creating
a new one on a healthy remote worker node, therefore ensuring the expected number of replicas is actively running on
the remote cluster.

As explained in the pod reflection section, the local cluster has the feedback on what is happening on the remote cluster
because the remote pod status is propagated to the local pod and the number of container restarts is augmented to
account for possible deletions of the remote pod (e.g., the Liqo controller force-deletes the Terminating pod on the
failed node).

Warning: Enabling the controller can have some minor drawbacks: when the pod is force-deleted, the resource is
removed from the K8s API server. This means that in the (rare) case that the failed node becomes ready again and
without an OS restart, the containers in the pod will not be gracefully deleted by the API server because the entry
is not in the database anymore. The side effect is that zombie processes associated with the pod will remain in the
node until the next OS restart or manual cleanup.

25.2. Resilience to worker nodes failures 117

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/

Liqo

25.3 High-availability Liqo components

Liqo allows to deploy the most critical Liqo components in high availability. This is achieved by deploying multiple
replicas of the same component in an active/standby fashion. This ensures that, even after eventual pod restarts or
node failures, exactly one replica is always active while the remaining ones run on standby.

The supported components in high availability are:

• liqo-gateway: ensures no cross-cluster connectivity downtime. The number of replicas is configurable through
the Helm value gateway.replicas

• liqo-controller-manager: ensures the Liqo control plane logic is always enforced. The number of replicas is
configurable through the Helm value controllerManager.replicas

Look at the install customization options section for further details on how to configure high availability during Liqo
installation.

118 Chapter 25. Service Continuity

CHAPTER

TWENTYSIX

CONTRIBUTING TO LIQO

First off, thank you for taking the time to contribute to Liqo!

This page lists a set of contributing guidelines, including suggestions about the local development of Liqo components
and the execution of the automatic tests.

26.1 Repository structure

The Liqo repository structure follows the Standard Go Project Layout.

26.2 Release notes generation

Liqo leverages the automatic release notes generation capabilities featured by GitHub. Specifically, PRs characterized
by the following labels get included in the respective category:

• kind/breaking: Breaking Change

• kind/feature: New Features

• kind/bug: Bug Fixes

• kind/cleanup: Code Refactoring

• kind/docs: Documentation

26.3 Local development

While developing a new feature, it is typically useful to test the changes in a local environment, as well as debug the
code to identify possible problems. To this end, you can leverage the setup.sh script provided for the quick start example
to spawn two development clusters using KinD, and then install Liqo on both of them (you can refer to the dedicated
section for additional information concerning the installation of development versions through liqoctl):

./examples/quick-start/setup.sh
liqoctl install kind --kubeconfig=./liqo_kubeconf_rome --version ...
liqoctl install kind --kubeconfig=./liqo_kubeconf_milan --version ...

Once the environment is properly setup, it is possible to proceed according to one of the following approaches:

• Building and pushing the Docker image of the component under development to a registry, and appropriately
editing the corresponding Deployment/DaemonSet to use the custom version. This allows to observe the modified

119

https://github.com/golang-standards/project-layout
https://kind.sigs.k8s.io/

Liqo

component in realistic conditions, and it is mandatory for the networking substratum, since it needs to interact
with the underlying host configuration.

• Scaling to 0 the number of replicas of the component under development, copying its current configuration (i.e.,
command-line flags), and executing it locally (while targeting the appropriate cluster). This allows for faster
development cycles, as well as for the usage of standard debugging techniques to troubleshoot possible issues.

26.4 Automatic tests

Liqo features two major test suites:

• End-to-end (E2E) tests, which assess the correct functioning of the main Liqo features.

• Unit Tests, which focus on each specific component, in multiple operating conditions.

Both test suites are automatically executed through the GitHub Actions pipelines, following the corresponding slash
command trigger. A successful outcome is required to make PRs eligible for being considered for review and merged.

The following sections provide additional details concerning how to run the above tests in a local environment, for
troubleshooting.

26.4.1 End-to-end tests

We suggest executing the E2E tests on a system with at least 8 GB of free RAM. Additionally, please review the
requirements presented in the Liqo examples section, which also apply in this case (including the suggestions concerning
increasing the maximum number of inotify watches).

Once all requirements are met, it is necessary to export the set of environment variables shown below, to configure the
tests. In most scenarios, the only variable that needs to be modified is LIQO_VERSION, which should point to the SHA
of the commit referring to the Liqo development version to be tested (the appropriate Docker images shall have been
built in advance through the appropriate GitHub Actions pipeline).

export CLUSTER_NUMBER=4
export K8S_VERSION=v1.21.1
export CNI=kindnet
export TMPDIR=$(mktemp -d)
export BINDIR=${TMPDIR}/bin
export TEMPLATE_DIR=${PWD}/test/e2e/pipeline/infra/kind
export NAMESPACE=liqo
export KUBECONFIGDIR=${TMPDIR}/kubeconfigs
export LIQO_VERSION=<YOUR_COMMIT_ID>
export INFRA=kind
export LIQOCTL=${BINDIR}/liqoctl
export POD_CIDR_OVERLAPPING=false
export TEMPLATE_FILE=cluster-templates.yaml.tmpl

Finally, it is possible to launch the tests:

make e2e

120 Chapter 26. Contributing to Liqo

Liqo

26.4.2 Unit tests

Most unit tests can be run directly using the ginkgo CLI, which in turn supports the standard testing API (go test,
IDE features, . . .). The only requirement is the controller-runtime envtest environment, which can be installed through
setup-envtest:

go install sigs.k8s.io/controller-runtime/tools/setup-envtest@latest
setup-envtest use 1.25.x!

To enable the downloaded envtest, you can append the following line to your ~/.bashrc or ~/.zshrc file:

source <(setup-envtest use --installed-only --print env 1.25.x)

Some networking tests, however, require an isolated environment. To this end, you can leverage the dedicated liqo-test
Docker image (the Dockerfile is available in build/liqo-test):

Build the liqo-test Docker image
make test-container

Run all unit tests, and retrieve coverage
make unit

Run the tests for a specific package.
Note, the package path must start with ./ to avoid the "package ... is not in GOROOT␣
→˓error".
make unit PACKAGE_PATH=<package_path>

Debugging unit tests

When executing the unit tests from the liqo-test container, it is possible to use Delve to perform remote debugging:

1. Start the liqo-test container with an idle entry point, exposing a port of choice (e.g. 2345):

docker run --name=liqo-test -d -p 2345:2345 --mount type=bind,src=$(pwd),dst=/go/
→˓src/liqo \

--privileged=true --workdir /go/src/liqo --entrypoint="" liqo-test tail -f /dev/
→˓null

2. Open a shell inside the liqo-test container, and install Delve:

docker exec -it liqo-test bash
go install github.com/go-delve/delve/cmd/dlv@latest

3. Run a specific test inside the container:

dlv test --headless --listen=:2345 --api-version=2 \
--accept-multiclient ./path/to/test/directory

4. From the host, connect to localhost:2345 with your remote debugging client of choice (e.g. GoLand), and enjoy!

26.4. Automatic tests 121

https://onsi.github.io/ginkgo/#installing-ginkgo
https://book.kubebuilder.io/reference/envtest.html
https://pkg.go.dev/sigs.k8s.io/controller-runtime/tools/setup-envtest
https://www.jetbrains.com/help/go/attach-to-running-go-processes-with-debugger.html#step-3-create-the-remote-run-debug-configuration-on-the-client-computer

	What does it provide?
	What to explore next?
	Peering
	Overview
	Approaches
	Out-of-band control plane
	In-band control plane

	Offloading
	Assigned resources
	Virtual kubelet
	Virtual node
	Namespace extension
	Pod offloading
	Resource reflection

	Network Fabric
	Network manager
	Cross-cluster VPN tunnels
	In-cluster overlay network

	Storage Fabric
	Requirements
	Resources
	Connectivity
	Out-of-band control plane peering
	Additional considerations

	In-band control plane peering
	Network firewalls

	Liqo CLI tool
	Introduction
	Install liqoctl with Homebrew
	Install liqoctl with asdf
	Install liqoctl manually
	Install Kubectl plugin with Krew
	Install liqoctl from source
	Enable shell autocompletion

	Install
	Install with liqoctl
	Customization options
	Global
	Control plane
	Networking

	Install with Helm
	Install development versions
	Check installation
	Liqo and Calico

	Uninstall
	Purge CRDs

	Requirements
	Quick Start
	Provision the playground
	Explore the playground

	Install Liqo
	Peer two clusters
	Leverage remote resources
	Start a hello world application
	Check the pod connectivity

	Expose the pods through a Service
	Check the Service connectivity

	Play with a microservice application
	Observe the application deployment
	Access the demo application

	Tear down the playground
	Unoffload namespaces
	Revoke peerings
	Uninstall Liqo
	Destroy clusters

	Offloading with Policies
	Provision the playground
	Peer the clusters
	Tune namespace offloading
	Deploy applications
	Tear down the playground
	Unoffload namespaces
	Revoke peerings
	Uninstall Liqo
	Destroy clusters

	Offloading a Service
	Provision the playground
	Peer the clusters
	Offload a service
	Consume the service

	Tear down the playground
	Unoffload namespaces
	Revoke peerings
	Uninstall Liqo
	Destroy clusters

	Stateful Applications
	Provision the playground
	Peer the clusters
	Deploy a stateful application
	Consume the database
	Database failures toleration

	Tear down the playground
	Unoffload namespaces
	Revoke peerings
	Uninstall Liqo
	Destroy clusters

	Global Ingress
	Provision the playground
	Peer the clusters
	Deploy an application
	Check application spreading
	Check service reachability
	Tear down the playground
	Unoffload namespaces
	Revoke peerings
	Uninstall Liqo
	Destroy clusters

	Replicated Deployments
	Provision the playground
	Peer the clusters
	Tune namespace offloading
	Deploy applications
	Tear down the playground
	Unoffload namespaces
	Revoke peerings
	Uninstall Liqo
	Destroy clusters

	Provision with Terraform
	Provision the infrastructure
	Analyze the infrastructure and code
	Provision the clusters
	Install Liqo
	Extract the peering parameters
	Run the peering procedure
	Offload a namespace

	Tear down the infrastructure

	Peer two Clusters
	Overview
	Out-of-band control plane
	Information retrieval
	Peering establishment
	Bidirectional peering
	Tear down

	In-band control plane
	Peering establishment
	Bidirectional peering
	Tear down

	Namespace Offloading
	Overview
	Offloading a namespace
	Namespace mapping strategy
	Pod offloading strategy
	Cluster selector

	Unoffloading a namespace

	Resource Reflection
	Pods offloading
	Service exposition
	Services
	EndpointSlices
	Ingresses

	Persistent storage
	Configuration data

	Stateful Applications
	Liqo virtual storage class
	Local cluster binding
	Remote cluster binding
	Move PVCs across clusters

	Externally managed storage

	Prometheus Metrics
	Scraping metrics
	Cross-cluster network metrics
	Grafana dashboard

	Virtual kubelet metrics
	Grafana dashboard

	External Network
	Overview
	Enable/Disable the External Network
	networking.internal=false
	networking.reflectIPs=false

	Service Continuity
	Resilience to cluster failures/unavailability
	Remote cluster failure
	Local cluster failure
	Remote pod resiliency
	Remote endpointslices

	Resilience to worker nodes failures
	Worker node failure on the local cluster
	Worker node failure on the remote cluster

	High-availability Liqo components

	Contributing to Liqo
	Repository structure
	Release notes generation
	Local development
	Automatic tests
	End-to-end tests
	Unit tests
	Debugging unit tests

